


Practical informations

e 9h00 - 17h00
e 2 breaks morning and afternoon

e Possibility to have lunch in the INRAE restaurant
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Better Rnow us

e Who are you ?
o Institution, laboratory, position ...
« What are your needs in metagenomics ?
e Do you have already dealed with metagenomics data ?
o Which kind of data ?
o Aim of the study ?
e Do you have generated data for a new analysis ?
o Which design ? How many samples ? Sequencing technology ?
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Migale team

e Migale website
e Dedicated service to Data Analysis
o Specialists in Metagenomics, Genomics, Bacterial genome assembly
and annotation
o Bioinformatics & Statistics
o 84 projects since 2016
o Collaboration or Support
e Developments
o FROGS
o easy16S, affiliationExplorer

Discover the service offer here
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https://migale.inrae.fr/
https://analyses.migale.inra.fr/service-offer.html
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Objectives

After this 4 days training, you will:

 Know the outlines, advantages and limits of amplicon sequencing data
analysis

e Be able to use FROGS (through Galaxy) and phyloseq (through
easy16S) tools on the training data set

e Be able to identify tools and parameters adapted to your own analyses
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Program

e Day 1 & 2: Bioinformatics
e Day 3 & 4: Statistics

And one time to train with your own data or another dataset.
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Introduction to amplicon analyses



Meta-omics using next-genertation sequencing (NGS)

%///

Wolfe eraf, 2014 Almeida ef a/, 2014

Who is here?

Dugat-Bony et a/, 2015

What can they do?

What are they doing?
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Meta-omics using next-genertation sequencing (NGS
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Strengths and weaknesses of amplicon analyses?

http://scrumblr.ca/strengths_weaknesses
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http://scrumblr.ca/strengths_weaknesses

Strengths

Detect subdominant microorganisms present in complex samples -
microbial inventories

Get (approximate) relative abondances of different taxa in samples
Analyze and compare many taxa (hundreds) at the same time
Taxonomic profiles of the communities (usually up to genus level, and
sometimes up to species or strain)

Low cost

Weaknesses

 Compositional data, many biases -> no absolute quantification
e Exact identification of the organisms difficult

e Hard to distinguish live and dead fractions of the communities
e No functional view of the ecosystem
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https://doi.org/10.1099/ijs.0.038075-0

Choice of a marker gene

The perfect / ideal gene marker:

1S ubiquist

1S conserved among taxa

1s enough divergent to distinguish stains

1s not submitted to lateral transfer

has only one copy in genome

has conserved regions to design specific primers

1s enough characterized to be present in databases for taxonomic
affiliation
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Bacterial targets

The genes that have been proposed for this task include those encoding :

e 16S /23S rRNA

DNA gyrase subunit B (gyrB)

RNA polymerase subunit B (rpoB)

TU elongation factor (tuf)

DNA recombinase protein (recA)

protein synthesis elongation factor-G (fusA)
e dinitrogenase protein subunit D (nifD) ...

Bacterial lineages vary in their genomic contents, which suggests that
different genes might be needed to resolve the diversity within certain
taxonomic groups.
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The gene encoding the small subunit of the ribosomal RNA

e The most widely used gene in molecular phylogenetic studies

e Ubiquist gene: 16S rDNA in prokayotes ; 18S rDNA in eukaryotes

e Gene encoding a ribosomal RNA : non-coding RNA (not translated),
part of the small subunit of the ribosome which is responsible for the
translation of mRNA in proteins

e Not submitted to lateral gene transfer

» Availability of databases facilitating comparison
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Growth of SSU ribosomal RNA databases (RDP Il & SILVA)
www.arb-silva.de
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165 rRNA structure
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Example of gy/B as interesting marker gene

e A single-copy housekeeping gene that encodes the subunit B of DNA
gyrase, a type II DNA topoisomerase, and therefore plays an essential
role in DNA replication.

Essential and ubiquitous in bacteria

Higher rate of base substitution than 16S rDNA does

Sufficiently large in size for use in analysis of microbial communities.
Also present in Eukarya and sometimes in Archaea but it shows
enough sequence dissimilarity between the three domains of life to be
used selectively for Bacteria.
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Poirier et al (2018)
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RESEARCH ARTICLE

Deciphering intra-species bacterial diversity of
meat and seafood spoilage microbiota using
gyrB amplicon sequencing: A comparative
analysis with 16S rDNA V3-V4 amplicon
sequencing

suuunn:imr' oua:-nu:_ ww‘ G:udﬁle&:l::::
mm =

1 MICALIS, INRA, AgroPansTech, Universilé Paris-Saclay, Jouy-en-Josas, France, 2 MalAGE, INRA,
Universilé Paris-Saclay, Jouy-en-Josas, France, 3 Secalim, INRA, Oniris, Nantes, France

* stephane. chaillou @ inra.ir

Abstract

Meat and i spoik ns harbor extensive ! i y that is
miyhmdmﬂmnsnﬂnmﬁordwmbﬂﬂmnhgﬂmﬂmrdmmwlhcl
ferent spoilage metabolic potential. To decipher the intraspecies diversity of such micro-
Uom.lmdlhnulmﬂcmmmissmmbimm
d the p | benefit of an altemative genetic marker, gylﬂ.wltﬂ'l

encodes the subunit B of DNA gyrase, a type Il DNA i A compari 1
16S rDNA-based (V3-V4) amplicon sequencing and gyrB-based amplicon sequencing was
carried out in five types of meat and seafood products, with five mock communities serving
as quality controls. Our : led that bacterial richness in these mock communities
and food samples was estimated with higher accuracy using gy than using16S rDNA.
However, for Firmicutes species, 35% of putative gyrB reads were actually identified as

i ofa gyrBr g, parE, which encodes subunit B of topoisomerase IV; we there-
mwmammmmmmdmmmmm
use in all subsequent analyses. Despile this co-ampilification, the )
mmﬁmmﬁhﬂﬂ“ﬂﬁqmmmmw
observed for 165 rDNA for all the tested species. This confirms that gyr can be used suc-
cessfully alongside 165 rDNA to ine the species composition (richness and even-
ness) of food microbiota. The major benefit of gyrB sequencing is its potential for improving
taxonomic assignment and for further investigating OTU richness al the subspecies level,
thus allowing more accurate discrimination of samples. Indeed, 80% of the reads of the 16S
rDNA dataset were represented by thirteen 16S rDNA-based OTUs that could not be
assigned at the species-level. Instead, these same clades coresponded to 44 gyrB-based
OTUs, which diff d various lineages down to the subspecies level. The ir d
ability of gyrB-based analyses lo track and trace phylogenetically different groups of strains
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https://doi.org/10.1371/journal.pone.0204629

EuRaryotic counterpart

e 18S (small subunit ribosomal RNA)
e ITS (Internal Transcribed Spacers)
o Length variability (50-1000 nt)
o Many copies (up to hundreds!)
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Primers choice

e 16S rRNA gene e Internal Transcribed Spacer
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) ‘ “« <«
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sz kvoe ITS4_KYO3

V1-V9 (Full-length)

Pacific Biosciences

e A lot of others...
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Planning an experiment



Planning an experiment

A

Experimental
Challenges

/

Study
Design

Evidences
&
Hypothesis

size

Controls

Sample  Cohort
selection

Sample

Handling

Transport

Contamination

Barcoding/adapter

Law quality
reads

Quality
Control

Trimming  regions
Host
sequences

Annotation
algorithm

Unclassified/
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Planning an experiment

Sampling

|

DMA extraction and preparation

|

Sequencing

|

Bioinformatics & statistical analyses

Questions and biases come at each

step!
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Expected output after bioinformatics

e A matrix table containing "species" and abundances in samples

OTU Affiliation Samplel Sample2 Sample3

OTU1 SpeciesA 0 500 0
OTU2 GenusA 200 41 100
OTU3 SpeciesB 1000 100 1000
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Experimental design



ThinRing before acting

Sampling

|

DMNA extraction and preparation

|

Sequencing

|

Bioinformatics & statistical analyses
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Sampling

T

DNA extraction and preparation

|

Sequencing

|

Bioinformatics & statistical analyses

Number of samples?
Associated metadata are
essential (Too many is better
than too few)

Contamination in lab
Conservation / Transportation
Storage

Bharti and Grimm (2019)

29 /123


https://doi.org/10.1093/bib/bbz155

DNA extraction and preparation

e Mechnical or chemical lysis?
sampling e Choice of DNA extraction kit
\ e PCR amplification biases

|

Seqguencing

|

Bioinformatics & statistical analyses
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Universal primers are not so universal

o Akkermensia genus detected (qPCR) but not found in metabarcoding
results
e Primers used for amplification
o F343: TACGGRAGGCAGCAG
o R784: TACCAGGGTATCTAATCCT
e Mismatches in primers
o 2 mismatches in Forward
o 1 mismatch in Reverse
e No amplification...

Alard et al (2016) 31/123


https://doi.org/10.1111/1462-2920.13181

Biological biases

Gene copy number spans over an order of magnitude, from 1 to up to
15 in Bacteria, but only up to 5 in Archaea

Only a minority of bacterial genomes harbors identical 16S rRNA gene
copies

Sequence diversity increases with increasing copy numbers.

While certain taxa harbor dissimilar 16S rRNA genes, others contain
sequences common to multiple species.

Quantification is impossible (in real life)!

Vetrovsky and Baldrian (2013) ; Angly et al (2014) 32 /123


https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1186/2049-2618-2-11

PCR amplification bias

o Amplification by PCR has sequence-dependence efficiency, especially
the sequence that binds to primers.

e If one sequence is amplified 10% more than another in one round, it
will be 1.130 = 17.4 x more abundant after 30 rounds.

e This effect is most important when the sequence has one or more
mismatches with the primer.

e With one mismatch, amplification efficiency is usually significantly
less, and with two or more mismatches the sequence may not be
amplified to detectable levels.
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PCR problems

I " e Cand D impact the abundance
Barcode 1 Barcode 2 ——— ,-? \ . o

S - without adding new sequences
—  E and F add new sequences
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https://doi.org/10.1093/nar/gkv717

Sequencing



Sequencing

Sampling

\

DNA extraction and preparation

\

Bioinformatics & statistical analyses
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Sequencing technologies?
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Main sequencing technologies for metabarcoding

Roche 454 lon Torrent Illumina MiSeq
Sequencing Kit GS FLX Titanium XLR70 PGM 400 Sequencing MiSeq Reagent Kits v2
Expected Read Up to 600 bp Up to 400 bp MiSeq Reagent Kit v2: Up to 2 x 250 bp
Length
Typical Throughput 450 Mb lon 314™ Chip v2: Up to 100 Mb Upto8.5Gb
lon 316™ Chipv2: Upto 1 Gb
lon 318™ Chipv2: Upto 2 Gb
Reads per Run ~1000,000 shokgun, lon 314™ Chip v2: 400-550 thousand ~15 million reads
~700,000 amplicon lon 316™ Chip v2: 2-3 millions
lon 318™ Chip v2: 4-5.5 millions
Consensus Accuracy 99.995% 99% 99%
Run Time 10h lon 314™ Chipv2: 2.3 4hand
to3.7h approximately 39 h
lon 316™ Chip v2: 3.0 depending on the
to4.9h number of cycles
lon 318™ Chip v2: 4.4
to7.3h
Sample Input gDNA, cDNA, or amplicons (PCR gDNA, cDNA, or amplicons (PCR gDNA, cDNA, or amplicons (PCR products)
producks) products) Small genome, amplicon, and targeted gene panel
sequencing
Weight 532 |bs. (242 kg) 65 bs. (30 kg) 120 lbs. (54.5 kg)
Instrument cost ~$500 K ~$80k ~§125k

Allali et al (2017)
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https://doi.org/10.1186/s12866-017-1101-8

Sequencing errors
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https://doi.org/10.1186/s12864-015-2194-9

Overlapping reads allow to correct some errors

Ej‘ml‘ﬂ_

1

(b)

D'Amore et al (2016) 40 / 123


https://doi.org/10.1186/s12864-015-2194-9

llumina MiSeq Sequencing

e DNA fragments are bound to the flowcell and sequenced (by synthesis)
Video

Paired-end reads allow to obtain longer fragments than 250 or 300 bp
Low error-rate

Substitution type miscalls are the dominant source of errors
Abordable cost due to multiplexing
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https://www.youtube.com/watch?v=fCd6B5HRaZ8

Multiplexing

— DNA Fragments

m— Sequencing Reads
— Roferonce Genome
— Sample 1 Barcode
— Sample 2 Barcode

A B C D
p— (1}
o — Wi, SO —_—
\_/_.//; I
p . P —
——— / Tl

? i B R R
i / / ~\\-—~—— e

Two representative DNA fragments from two unique samples, each attached to a specific barcode sequence that identifies the sample
from which it originated

. Libraries for each sample are pooled and sequenced in paralel. Each new read contains both the fragment sequence and its sample-

identifying barcode.
Barcode sequences are used 1o de-multiplex, or differentiate reads from each sample.
Each set of reads is algned to the reference sequence.

e max 384 indexes by run

MiSeq Reagent Kit v2 Nano MiSeq Reager| MiSeq Reagent Kit v2 MiSeq Reagent kit v3
Read Length | 2x250bp 2 x150 bp 2 x 150 bp 1x36bp 2x25bp 2x150 bp 2 x 250 bp 2x75bp 2 x 300 bp
Run Time 28 hrs 17 hrs 19 hrs 4 hrs 6 hrs 24 hrs 39 hrs 21 hrs 56 hrs
Output 500 Mb 300 Mb 1,2 Gb 540-610Mb | 750-850Mb | 4,5-51Gb 7,5-8,5Gb 3,3-3,8Gb | 13,2-15Gb
Single Reads 1 million 4 million 12-15 million 22-25 million
Paired-End Re 2million 8 million 24-30 million 44-50 million
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PacBio promises

e Get the full 16S sequence!

o We further demonstrate that full-length sequencing platforms are
sufficiently accurate to resolve subtle nucleotide substitutions (but not
insertions/deletions) that exist between intragenomic copies of the 16S
gene.

Johnson et al (2019) 43 / 123


https://doi.org/10.1038/s41467-019-13036-1

PacBio caveats

e Low sequencing accuracy and low coverage of terminal regions in public
16S rRNA databases deteriorate the advantages of long read length,
resulting in low taxonomic resolution in amplicon sequencing of human
gut microbiota

Whon et al (2018) 44 / 123


https://doi.org/10.1038/sdata.2018.68
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Fecal samples collected from 19 human subjects were sequenced using the indicated platforms: GS FLX+ (V1-4, red),
TMumina MiSeq (V1-3, light blue; V3-4, blue; V4, dark blue), and PacBio CCS (V1-9, green). Whole-genome shotgun
sequences generated by [lumina HiSeq (Shotgun 16 S, orange) were included as a reference for community structure
without amplification bias. (a) The sequence data were clustered using a UPGMA dendrogram based on the Bray-Curtis
dissimilarity matrix, and samples from the same individual are shown in the same color. The relative abundances of
bacterial taxa are displayed as a heatmap over 27 families (>1% relative abundance). (b) The sequence data were
clustered by principal component analysis.
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https://www.nature.com/articles/sdata201868

Sequencing biases

Contamination between samples during the same run
Contamination between samples during different runs (residual
contaminants)

Variability between runs: take into account for experimental plan
Variability inside run: add some controls

Salter et al (2014) 46 / 123


https://doi.org/10.1186/s12915-014-0087-z

Negative controls are important!

Table 1 List of contaminant genera detected in sequenced negative ‘blank’ controls

From: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Phylum

List of constituent contaminant genera

Proteobacteria

Alpha-proteobacteria:

Afipia, Aquabacterium®, Asticcacaulis, Aurantimonas, Beijjerinckia, Bosea, Bmdymizabfumd. Brevundimonas®, Caulobacter, Craurococcus, Devosia, Hoeflea®, Mesorhizobium,
Methylobacterium®, Novosphingobium, Ochrobactrum, Paracoccus, Pedomicrobium, Phyllobacterium®, Rhizobium™®, Roseomonas, Sphingobium, Sphingomonas®3:2, sphingopyxis

Beta-proteobacteria:

Acidovorax~®, Azoarcus®, Azospira, Burkholderia®, comamonas®, Cupriavidus®, Curvibacter, Delftia®, Duganella®, Herbaspirillum®<, Janthinobacterium®, Kingella, Leptothrix®,
Limnobacter®, Massilia®, Methylophilus, Methyloversatilist, Oxalobacter, Pelomonas, Polaromonas®, Ralstonia® %2, Schlegelella, Sulfuritalea, Undibacterium®, Variovorax

Gamma-proteobacteria:

Acinetobacter®=, Enhydrobacter, Enterobacter, Escherichia®“%<, Nevskia®, Pseudomonas®®¢, Pseudoxanthomonas, Psychrobacter, Stenotmphnmonas“’-b*‘-d-i, Xanthomonas®

Actinobacteria

Aeromicrobium, Arthrebacter, Beutenbergia, Brevibacterium, Corynebacterium, Curtobacterium, Dietzia, Geodermatophilus, Janibacter, Kocuria, Microbacterium, Micrococcus,
Microlunatus, Patulibacter, Propionibacterium®, Rhodococcus, Tsukamurella

Firmicutes

Abiotrophia, Bacillus?, Brevibacillus, Brochathrix, Facklamia, Paenibacillus, Streptococcus

Bacteroidetes

Chryseobacterium, Dyadobacter, Flavobacterium®, Hydrotalea, Niastella, Olivibacter, Pedobacter, Wautersiella

Deinococcus-
Thermus

Deinococcus

Salter et al (2014)

Acidobacteria

Predominantly unclassified Acidobacteria Gp2 organisms

The listed genera were all detected in sequenced negative controls that were processed alongside human-derived samples in our laboratories (WTSI, ICL
and UB) over a period of four years. A variety of DNA extraction and PCR kits were used over this period, although DNA was primarily extracted using
the FastDNA SPIN Kit for Soil. Genus names followed by a superscript letter indicate those that have also been independently reported as contaminants

previously. “also reported by Tanner ef al. [12]; balso reported by Grahn et al. [14]; “also reported by Barton et al. [17]; dalso reported by Laurence et al. [18];

“also detected as contaminants of multiple displacement amplification kits (information provided by Paul Scott, Wellcome Trust Sanger Institute). ICL,
Imperial College London; UB, University of Birmingham; WTSI, Wellcome Trust Sanger Institute.
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Negative controls are important!

Figure 1

From: Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
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llustration

Taxon Appearance From Extraction and
Amplification Steps Demonstrates the Value of
Multiple Controls in Tick Microbiota Analysis

Emilie Lejal’, §, Agustin Estrada -Pefia’,  Maud Marsot, ., Jean-Frangois Cossont . Olivier Rué*s,
Mahendra layssier-Taussat’ and Thomas Pollet'®"

Lejal et al (2019)

Here, we showed that contaminant
OTUs from extraction and
amplification steps can represent
more than half the total sequence

yield in sequencing runs, and lead

to unreliable results when
characterizing tick microbial
communities. We thus strongly
advise the routine use of negative
controls in tick microbiota studies,
and more generally in studies
involving low biomass samples
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Bioinformatics & Biostatistics

e Tools
sampling e Databases
e Normalization
\ e Diversity indices

DMNA extraction and preparation

|

Sequencing

*
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Impact of method and targeted region

Human Gut

g

BLAST

©0000HO0000H00000R00000H00000R00000K

NLEQOOONLODOONBONOONLANDOONLBODOONLNND
F343 1003

[J Unclassified

[ Others (<0.02 Everywhere)
[ Euryarchaeota
[ Aquificae

O Deferribacteres
[ OP11

[ Nitrospira

0 oDl

[ Lentisphaerae
JBRC1

O ws3

@ Actinobacteria
v - [ Pla nctom;t'cete‘s
[ Verrucomicrobia
E Chloroflexi

[l Spirochaetes

[l Cyanobacteria
B Acidobacteria

B Firmicutes

[ Bacteroidetes

P
4
-
4
4
4
4

LCA RchAndBack Rch Greengenes RDP

o o 9o 90 9 0 9O 0 9O 0 0O 0O 9O 00000900000 000900 99O a =
=R -E-E-E-E-E-E-E-E- Rl R = E-E-E-E-E-- B Proteobacteria
h !-II l-ll !-II —'I I-II i-ll l-ll ‘-I FII NI I"\ll NI NI NI NI NI NI NI NI -w‘ ‘Q' ‘I 1," q' 'QI o
P~ = M~ O P~ = @@ O = M M~ < ~ 3O >~ S5 0 WS M st P~ 0 W >
1 00 — Oh W M O N o s = D O WY O N s 80 = M O N
Wy = O O M W < O vw=t M W M~ O O M W <~ O 7= ™M I~ O UV ~ O
A e b o~ oo o oo e e M b e W e~ oo o of of o~ e W b o oo o

w o« w =

Primer Name And Sequence Length

Compositions at the phylum level for Human gut and, using a range of different methods (separate subpanels within each
group).
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Benchmarks
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e Be cautious with benchmarks!
e Input data are never identical -
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Benchmarks

Selected differences in relative abundances of the most impacted taxa according to data generated by different platforms (indicated by different colors) and
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bioniformatic analysis pipelines (indicated across the top). The full figure can be seen in Additional file 2: Figure S2

Allali et al (2017)
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Conclusion 1: sequencing data do not contain exactly what
you sampled...
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B3 PCR Amplification
u * 2

SN AR R R B B

T o

Observed bias by bacterium. The observed bias (the observed minus the actual proportions) for each
bacterium in the experimental design due to the different effects of our DNA Extraction, PCR amplification,
and sequencing and taxonomic classification protocols. The total bias is also plotted for each bacterium. For

each box and whisker plot, only the samples including the bacterium were included.
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Conclusion 2: but Reep biases in mind for analyzing your
data!
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Key advice

e Discuss with everyone involved in the experiment, from the field
technician to the statistician
e Each choice affects the following steps!
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Bioinformatics



The aim is to find the correct amplicon sequences and their abundances
for each sample

OTU Affiliation Samplel Sample2 Sample3

OTU1 SpeciesA 0 500 0
OTU2 GenusA 200 41 100
OTU3 SpeciesB 1000 100 1000
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Step 1: construct real amplicon sequences

A) Bulk sample W B) Amplicons W C) Sequences m
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Step 2: Assign a taxonomy to sequences

e Is that easy?

(a)
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Bioinformatics solutions

MG-RAST (2008)
Mothur (2009)
Qiime (2010)
UPARSE (2013)
FROGS (2014)
DADAZ2 (2016)
Qiime2 (2019)
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Main differences

Ease of use
o command line vs graphical interfaces
o fitting complexity
Scalling
Paradigm: Clustering or denoising
Chimera detection
Taxonomic affiliation method
o with training set
o blast alignment
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FROGS: Find Rapidly 0TUs with Galaxy Solution

Escudié et al (2007)

Easy to use for biologists

Last updated and adapted tools
Innovative affiliation tag to
highlight databases conflicts
and uncertainties

Designed by a group of experts
of metabarcoding analyses
Better accuracy than other
tools from 16S and ITS
simulated and real data
Complete informations
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Switch to TP: Galaxy



Sequencing data



Content of sequenced fragments

e The expected amplicon sequence
ACTGGGTGTAAGAGCT

e The primers are sequenced too
ACTGACTGGGTGTAAGAGCTCTTA

e With two fragments:

o R1 ACTGACTGGGTGTAAG
o R2 TAAGAGCTCTTACACC
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Content of sequenced fragments in multiplexed file

e Barcodes are added to each extremity
TTTTACTGACTGGGTGTAAGAGCTCTTACCCC
e With two fragments:

o R1 TTTTACTGACTGGGTG
o R2 GGGGTAAGAGCTCTTA
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Demultiplexing

e Assign each read to FASTQ files depending on barcode found
e BARCODE FILE is expected to be tabular:
o first column corresponds to the sample name (unique, without
space)
o second to the forward sequence barcode used (None if only reverse
barcode)
o optional third is the reverse sequence barcode (optional)
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Switch to TP: FROGS Demultiplex



FASTQ



FASTQ syntax

The FASTQ format consists of 4 sections:

1. A FASTA-like header, but instead of the > symbol it uses the @ symbol.
This is followed by an ID and more optional text, similar to the FASTA
headers.

2. The second section contains the measured sequence (typically on a
single line), but it may be wrapped until the + sign starts the next
section.

3. The third section is marked by the + sign and may be optionally
followed by the same sequence id and header as the first section

4. The last line encodes the quality values for the sequence in section 2,
and must be of the same length as section 2.
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FASTQ syntax

Example

@SEQ ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+

PEPR((((F**4) ) %%%++) (%%%%)  L*¥**-+*' 1) ) **55CCF>>>>>>CCCCCCC65

77123



FASTQ quality

The weird characters in the 4th section are the so called “encoded”
numerical values. Each character represents a numerical value: a so-
called Phred score, encoded via a single letter encoding.

P #$%&" () *+,-./0123456789: ; <=>?@ABCDEFGHI

| | | | | | |
...15...20...25...30...35...40

(O
— U1—

=

(o]
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FASTQ quality

The quality values of the FASTQ files are on top. The numbers in the
middle of the scale from 0 to 40 are called Phred scores. The numbers
represent the error probabilities via the formula:

Error=10"(-P/10) It is basically summarized as:

e P=0 means 1/1 (100% probability of error)

P=10 means 1/10 (10% probability of error)
P=20 means 1/100 (1% probability of error)
P=30 means 1/1000 (0.1% probability of error)
P=40 means 1/10000 (0.01% probability of error)
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FASTQ quality encoding specificities

There was a time when instrumentation makers could not decide at what
character to start the scale. The current standard shown above is the so-
called Sanger (+33) format where the ASCII codes are shifted by 33. There
1s the so-called +64 format that starts close to where the other scale ends.

1

1 S5555555555555555555555555555555555555555 5 ceeectsttsssasssssasssasssnsssssssssssssssssassassss 1
D i i iieieisanaataananann }.9.4.9.00.0.0.9.0.00000.00.00000000600.0.0.0.0.09.¢.9.9.9.9.0.9.¢.9.4.9.0. CU A !
............................... IITIIITIIIIIITITIIIIII T T I I IITII I T I I T ITITT T I I e e e e s e a oo oaaaccaaansnanse

: 33 59 64 73 104 126 .
I 0iiieeecacananaaasaaannsns 26...31....... 40 1
: Y 9 iienrnntinannnaaseatsonanans 40 .
1 Duievanens L 40

1 1
1 1
: 0.2..ccccieccscacanananas 26...31........ 41 :
1 1
' S - Sanger Phred+33, raw reads typically (0, 40) 1
: X - Solexa Solexa+64, raw reads typically (-5, 40) :

: I - Illumina 1.3+ Phred+64, raw reads typically (0, 40) :

)
‘L= Illumina 1.8+ Phred+33, raw reads typically (0, 41)
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FASTQ files

e R1

@idl:1
ACTGACTGGGTGTAAG
+

e R2

@idl:2
TAAGAGCTCTTACACC
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FASTQ files

e Itis crucial to check the quality of the raw data

o expected number of files?
o expected number of reads per file?
o data quality?

e Do not start an analysis if something wrong

o Unusefull if some data are missing
o You can (have to) discuss with the sequencing platform to
understand
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Switch to TP: Quality control



Quality profiles
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Preprocess



Preprocess

 Remove non-biological informations
o primers, barcodes, remaining sequencing primers...
e Filter on length
e Filter on nucleotide content
e Overlap reads if possible
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Overlap

P5
515F
e index
P7
46 bp overla
SBSF I P P
(515F) 150 bp
,‘ PT
150 bp SBSR
(806R)
254 bp '
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Switch to TP: FROGS Preprocess



Clustering



Sequencing data are noised

¢ —

- . : |
: _t.. k Sequencing errors
PCR errors 16S sequence diversity
Chimera formation
Expected Results

B

| Contamination J

90/123



0TU paradigm

e Operational Taxonomic Unit

A) Bulk sample W B) Amplicons W C) Sequences ml D) OTUs
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ASV paradigm

e Amplicon Sequence Variants

A) Bulk sample W B) Amplicons W C) Sequences m D) OTUs
[ -
o < o oo@e g
. Species 1 - @ PCRerrors ° jumps | |1 ® I
f = O e _ \ '
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fhs . depth . .. i ] 1
Sp.5 bias ] it \ 7
i o
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® oo Denoising

Haplotypes <

ASV are inferred by a de novo process in which biological sequences are discriminated from errors on the
basis of the expectation that biological sequences are more likely to be repeatedly observed than are error-
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ASV promises
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Operational Taxonomic Units

OTUs: a Proxy for « Bacterial Species »

97% ID

I |

Phylogenetic tree of 16S rRNA

OTu 1l

Clostridium
difficile

OTU 2

Bacillus cereus

OoTU 3

Escherichia coli

Shigella flexneri
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OTUs construction strategies

e De novo OTU picking
o by choosing a fixed sequenced dissimilarity
o by relying on a small local linking threshold, representing the
maximum number of differences between two amplicons
e Closed-reference OTU picking
o by using a reference databank
o discards all reads not similar to the reference databank
e Open-reference OTU picking
o by using a reference databank
o de novo clusters remaining reads
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Fixed sequence dissimilarity: the traditional 97%...
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s B

start with A start with B

decreasing length,
decreasing abundance,
external references

t"}

-

L ™
R
- .
] r

TR
:&;:
-

r;;Trin " __B

i . '.;. L

\ : CR
= xf_-;.-l v

natural limits of clusters

97 /123



97%?

100

95

M |nterspecies
M ntragenus

100.0- m Intraspecies

S
[=2]
D 2] o] )]

(%) Arepuis eousnbes susb yNY! S9

] 1 ]
10 o 10
s 0] w L~

96.5

]
o
o
o

ANI (%)

98 /123



Swarm: A smart idea

SWdlITI

large-scale clustering

clustering threshold (often 97%)

swarm uses abundance values and a
is most of the time unadapted and new clustering strategy to delineate

can mask diversity. natural high-quality OTUs.
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Swarm

e A robust and fast clustering method for amplicon-based studies

e The purpose of swarmis to provide a novel clustering algorithm to
handle large sets of amplicons

e swarm results are resilient to input-order changes and rely on a small
local linking threshold d, the maximum number of differences
between two amplicons

e swarm forms stable high-resolution clusters, with a high yield of
biological information

e Default: forms a lot of low-abundant OTUs that are in fact artifacts and
need to be removed

Mahé et al (2015) ; Mahé et al (2014) 100 /123
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d: the small local linking threshold

ACGT ACGT ACGT
AGGT A-GT A--T

differences 1 1 2

initial seed (randomly picked
from amplicon dataset)
no more closely related amplicons,
the process stops (equivalent to the
Kruskal algorithm when d = 1)

explore the amplicon space
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Swarm steps
A) growth

B) breaking

abundance

.g| _

valley
break here

l
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Switch to TP: FROGS clustering



Chimera removal



Chimera

Biological sequence X

Biological sequence ¥

Chimera formed from X and ¥
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Chimera detection strategies

e Reference based: against a database of «genuine» sequences
e De novo: against abundant sequences in the samples

e FROGS uses vsearch as chimera removal tool

Rognes et al (2016) 106 / 123
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 FROGS adds a sample-cross validation
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Chimera rates in samples

e From 5 to 40% in 16S data

% Observed Chimera content

Samples

ABI3730 454 FLX Titanium

vVi-vo Vi1-v3 V3-v5s V6-vV9
MC 290 A (0 14261034 14.75*945 13.49+852
gut 771646 22.90*+8.56 16.03*+2.86 17.76£3.76
oral $22:th 15 2055+11.73 10.98+4.01 9 105 02
skin 349*+577 11.15*1.36 7.51*+2.49 5.73*+1.69
vaginal 6.31£6.64 12.60£6.70 B.62:451 .00t &5

*Values are averages = STDEV calculated from multiple replicates of MC, and
from replicates of multiple clinical samples originating from different body sites.

doi:10.1371/joumal.pone.0039315.t001

e Few with ITS (<10%)

Ward et al (2012)
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https://doi.org/10.1371/journal.pone.0039315

Switch to TP: FROGS remove chimera



Abundance filters



Filters

 Scientific considerations :
o Low abundant sequences are often chimeric
o Impossible to distinguish rare biosphere and artefacts
o Better accuracy after removing singletons
o Smart to use replicates to keep good OTUs
o Contaminations?
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Switch to TP: FROGS filters



Taxonomic affiliation



Taxonomic affiliation

e Blast

e RDP-classifier
e IDTAXA

e QIIME

e SINTAX
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RDP classifier caveats

e Bootstrap confidence

TABLE 2. Classifier accuracy versus bootstrap confidence
for the Bergey corpus

Lensth of % of correct classifier assignments within a

segment bootstrap confidence range of™

(bases)  1o0.95%  94.90% 89-80% T9-T0%  69-60%  59-50%
Full 98.0 664 69.2 41.8 46.2 347
400 98.3 80.1 759 05.4 61.1 49.2
200 98.2 a0.1 83.0 75.6 6.6 35.7
100 974 898 825 75.6 64,7 356
30 94.9 839 THh.8 67.9 9.5 49.7

* Bootstrap confidence reflects the frequency of most common assignments
out of 100 bootstrap samplings. Percentages of correct assignments at all ranks
and within this bootstrap confidence range are shown.

Wang et al (2007)

Precision

TABLE 5. Classifier accuracy at various query
lengths (NCBI's taxonomy)

Length of

% of segments accurately identified in:

segment

{bases) Phylum Class Order Family Genus
Full 99.8 99.3 98.6 97.1 92.1
400 997 99.3 98.5 97.0 90.4
200 997 99.2 98.1 95.7 B6.6
100 992 98.4 95.7 88.9 749
50 94.6 90.9 81.6 69.2 528
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Table 1 Number of taxonomic groups identified by each classifier among Illumina 16S rRNA
gene sequences (SRR3225706) from a mock microbiome sample [33]. Counts are provided
with and without including any sequences in the RDP training set that are labeled as
belonging to the 20 expected genera

From: IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences

Classified to genus level® Groups present in the mock community Absent from mock
(%) community®
Root Domain Phylum Class Order Family Genus Order Family Genus
Using the RDP training set BLAST 97.9 1 0 0 0 0 0 17 0 0 24
IDTAXA 942 1 0 1 1 2 5 14 0 1 2
MAPSeq 96.5 1 0 0 0 0 4 15 0 2 6
QIME 95.4 1 0 0 0 0 0 16 0 0 7
RDP 933 1 1 2 3 6 8 15 0 2 6
Classifier
SINTAX 94.2 1 1 1 4 3 3 14 1 0 3
SPINGO 96.5 1 0 0 0 0 0 17 0 0 3
With expected genera excluded from training BLAST 17.3 1 0 0 0 0 0 ] 0 0 65
datz IDTAXA 0.01 1 1 1 2 3 4 0 0 2 2
MAPSeq 24.6 1 0 0 2 5 " ] 1 8 20
QIIME 13.5 1 0 0 0 0 1] 0 0 0 16
RDP 3.83 1 1 2 3 6 9 ] 0 3 12
Classifier
SINTAX 8.76 1 1 1 7 5 & 0 1 1 9
SPINGO 26.7 1 0 0 0 0 0 ] 0 0 15

“Percent of total sequences from the mock community that were classified to the genus rank

BOther rank levels (root, domain, phylum, and class) all had counts of zero
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Advantages of FROGS affiliation

e Gives %cov & %id informations
e Gives all hits in a multi-affiliation file
o Allows a smart correction sometimes (hits with same Species but
different strains)
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Switch to TP: FROGS affiliation OTU



Phylogeny



Phylogenetic similarity gives an other information

Chakraborty et al (2020)
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Phylogenetic tree

e FROGS allows you to build a phylogenetic tree:

o Mafft for doing multiple sequence alignments
o Fasttree to build the rooted phylogentic tree
o Essential to compute Unifrac distances

e Not always possible if sequence diversity is too high (e.g. ITS)
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After this training... the real life

e Specific to FROGS
o frogs-support@inrae.fr
e Migale support
o help-migale@inrae.fr
e Want to collaborate with us?

o https://migale.inrae.fr/ask-data-analysis
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