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Practical informations
9h00 - 17h00

2 breaks morning and afternoon

Possibility to have lunch in the INRAE restaurant
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Better know us
Who are you ?

Institution, laboratory, position …
What are your needs in metagenomics ?
Do you have already dealed with metagenomics data ?

Which kind of data ?
Aim of the study ?

Do you have generated data for a new analysis ?
Which design ? How many samples ? Sequencing technology ?
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Migale team

Migale website
Dedicated service to Data Analysis

Specialists in Metagenomics, Genomics, Bacterial genome assembly
and annotation
Bioinformatics & Statistics
84 projects since 2016
Collaboration or Support

Developments
FROGS
easy16S, affiliationExplorer

Discover the service offer here
4 / 123

https://migale.inrae.fr/
https://analyses.migale.inra.fr/service-offer.html
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Objectives
After this 4 days training, you will:

Know the outlines, advantages and limits of amplicon sequencing data
analysis
Be able to use FROGS (through Galaxy) and phyloseq (through
easy16S) tools on the training data set
Be able to identify tools and parameters adapted to your own analyses
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Program
Day 1 & 2: Bioinformatics
Day 3 & 4: Statistics

And one time to train with your own data or another dataset.
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Introduction to amplicon analysesIntroduction to amplicon analyses
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Meta-omics using next-genertation sequencing (NGS)
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Meta-omics using next-genertation sequencing (NGS)
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Strengths and weaknesses of amplicon analyses?

http://scrumblr.ca/strengths_weaknesses
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http://scrumblr.ca/strengths_weaknesses


Strengths

Detect subdominant microorganisms present in complex samples →
microbial inventories
Get (approximate) relative abondances of different taxa in samples
Analyze and compare many taxa (hundreds) at the same time
Taxonomic profiles of the communities (usually up to genus level, and
sometimes up to species or strain)
Low cost

Weaknesses

Compositional data, many biases -> no absolute quantification
Exact identification of the organisms difficult
Hard to distinguish live and dead fractions of the communities
No functional view of the ecosystem
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Gene marker power

Kim et al (2012) 13 / 123

https://doi.org/10.1099/ijs.0.038075-0


Choice of a marker gene
The perfect / ideal gene marker:

is ubiquist
is conserved among taxa
is enough divergent to distinguish stains
is not submitted to lateral transfer
has only one copy in genome
has conserved regions to design specific primers
is enough characterized to be present in databases for taxonomic
affiliation
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Bacterial targets
The genes that have been proposed for this task include those encoding :

16S / 23S rRNA
DNA gyrase subunit B (gyrB)
RNA polymerase subunit B (rpoB)
TU elongation factor (tuf)
DNA recombinase protein (recA)
protein synthesis elongation factor-G (fusA)
dinitrogenase protein subunit D (nifD) ...

Bacterial lineages vary in their genomic contents, which suggests that
different genes might be needed to resolve the diversity within certain
taxonomic groups.
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The gene encoding the small subunit of the ribosomal RNA
The most widely used gene in molecular phylogenetic studies
Ubiquist gene: 16S rDNA in prokayotes ; 18S rDNA in eukaryotes
Gene encoding a ribosomal RNA : non-coding RNA (not translated),
part of the small subunit of the ribosome which is responsible for the
translation of mRNA in proteins
Not submitted to lateral gene transfer
Availability of databases facilitating comparison
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16S rRNA structure
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Example of gyrB as interesting marker gene
A single-copy housekeeping gene that encodes the subunit B of DNA
gyrase, a type II DNA topoisomerase, and therefore plays an essential
role in DNA replication.
Essential and ubiquitous in bacteria
Higher rate of base substitution than 16S rDNA does
Sufficiently large in size for use in analysis of microbial communities.
Also present in Eukarya and sometimes in Archaea but it shows
enough sequence dissimilarity between the three domains of life to be
used selectively for Bacteria.
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Poirier et al (2018) 20 / 123

https://doi.org/10.1371/journal.pone.0204629


Eukaryotic counterpart
18S (small subunit ribosomal RNA)
ITS (Internal Transcribed Spacers)

Length variability (50-1000 nt)
Many copies (up to hundreds!)
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16S rRNA gene Internal Transcribed Spacer

Primers choice

A lot of others...
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Planning an experimentPlanning an experiment
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Planning an experiment
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Questions and biases come at each
step!

Planning an experiment
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Expected output after bioinformatics
A matrix table containing "species" and abundances in samples

OTU Affiliation Sample1 Sample2 Sample3

OTU1 SpeciesA 0 500 0

OTU2 GenusA 200 41 100

OTU3 SpeciesB 1000 100 1000
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Experimental designExperimental design
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Thinking before acting
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Number of samples?
Associated metadata are
essential (Too many is better
than too few)
Contamination in lab
Conservation / Transportation
Storage

Sampling

Bharti and Grimm (2019) 29 / 123

https://doi.org/10.1093/bib/bbz155


Mechnical or chemical lysis?
Choice of DNA extraction kit
PCR amplification biases

DNA extraction and preparation
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Universal primers are not so universal

Akkermensia genus detected (qPCR) but not found in metabarcoding
results
Primers used for amplification

F343: TACGGRAGGCAGCAG
R784: TACCAGGGTATCTAATCCT

Mismatches in primers
2 mismatches in Forward
1 mismatch in Reverse

No amplification...

Alard et al (2016) 31 / 123

https://doi.org/10.1111/1462-2920.13181


Biological biases

Gene copy number spans over an order of magnitude, from 1 to up to
15 in Bacteria, but only up to 5 in Archaea
Only a minority of bacterial genomes harbors identical 16S rRNA gene
copies
Sequence diversity increases with increasing copy numbers.
While certain taxa harbor dissimilar 16S rRNA genes, others contain
sequences common to multiple species.
Quantification is impossible (in real life)!

Vetrovsky and Baldrian (2013) ; Angly et al (2014) 32 / 123

https://doi.org/10.1371/journal.pone.0057923
https://doi.org/10.1186/2049-2618-2-11


PCR ampli�cation bias
Amplification by PCR has sequence-dependence efficiency, especially
the sequence that binds to primers.
If one sequence is amplified 10% more than another in one round, it
will be 1.130 = 17.4 x more abundant after 30 rounds.
This effect is most important when the sequence has one or more
mismatches with the primer.
With one mismatch, amplification efficiency is usually significantly
less, and with two or more mismatches the sequence may not be
amplified to detectable levels.
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C and D impact the abundance
without adding new sequences
E and F add new sequences

PCR problems

Kebschull and Zador (2015) 34 / 123

https://doi.org/10.1093/nar/gkv717


SequencingSequencing
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Sequencing
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Sequencing technologies?
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Main sequencing technologies for metabarcoding

Allali et al (2017) 38 / 123

https://doi.org/10.1186/s12866-017-1101-8


Sequencing errors

D'Amore et al (2016) 39 / 123

https://doi.org/10.1186/s12864-015-2194-9


Overlapping reads allow to correct some errors

D'Amore et al (2016) 40 / 123

https://doi.org/10.1186/s12864-015-2194-9


Illumina MiSeq Sequencing
DNA fragments are bound to the flowcell and sequenced (by synthesis)
Video
Paired-end reads allow to obtain longer fragments than 250 or 300 bp
Low error-rate
Substitution type miscalls are the dominant source of errors
Abordable cost due to multiplexing
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https://www.youtube.com/watch?v=fCd6B5HRaZ8


Multiplexing

max 384 indexes by run
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PacBio promises
Get the full 16S sequence!
We further demonstrate that full-length sequencing platforms are
sufficiently accurate to resolve subtle nucleotide substitutions (but not
insertions/deletions) that exist between intragenomic copies of the 16S
gene.

Johnson et al (2019) 43 / 123

https://doi.org/10.1038/s41467-019-13036-1


PacBio caveats
Low sequencing accuracy and low coverage of terminal regions in public
16S rRNA databases deteriorate the advantages of long read length,
resulting in low taxonomic resolution in amplicon sequencing of human
gut microbiota

Whon et al (2018) 44 / 123

https://doi.org/10.1038/sdata.2018.68


Whon et al (2018) 45 / 123

https://www.nature.com/articles/sdata201868


Sequencing biases

Contamination between samples during the same run
Contamination between samples during different runs (residual
contaminants)
Variability between runs: take into account for experimental plan
Variability inside run: add some controls

Salter et al (2014) 46 / 123

https://doi.org/10.1186/s12915-014-0087-z


Negative controls are important!

Salter et al (2014) 47 / 123

https://doi.org/10.1186/s12915-014-0087-z


Negative controls are important!

Salter et al (2014) 48 / 123

https://doi.org/10.1186/s12915-014-0087-z


Here, we showed that contaminant
OTUs from extraction and
amplification steps can represent
more than half the total sequence
yield in sequencing runs, and lead
to unreliable results when
characterizing tick microbial
communities. We thus strongly
advise the routine use of negative
controls in tick microbiota studies,
and more generally in studies
involving low biomass samples

Illustration

Lejal et al (2019) 49 / 123

https://doi.org/10.3389/fmicb.2020.01093


Tools
Databases
Normalization
Diversity indices

Bioinformatics & Biostatistics

50 / 123



Impact of method and targeted region

Compositions at the phylum level for Human gut and, using a range of different methods (separate subpanels within each
group).

Liu et al (2008) 51 / 123

https://doi.org/10.1093/nar/gkn491


Be cautious with benchmarks!
Input data are never identical -
> results are never exactly the
same

Benchmarks

Kopylova et al (2016) 52 / 123

https://doi.org/10.1128/mSystems.00003-15


Benchmarks

Allali et al (2017) 53 / 123

https://doi.org/10.1186/s12866-017-1101-8


Conclusion 1: sequencing data do not contain exactly whatConclusion 1: sequencing data do not contain exactly what
you sampled...you sampled...
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Brooks et al (2015) 56 / 123

https://doi.org/10.1186/s12866-015-0351-6


Conclusion 2: but keep biases in mind for analyzing yourConclusion 2: but keep biases in mind for analyzing your
data!data!
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Summary

58 / 123



Key advice

Discuss with everyone involved in the experiment, from the field
technician to the statistician
Each choice affects the following steps!
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BioinformaticsBioinformatics
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The aim is to �nd the correct amplicon sequences and their abundances
for each sample

OTU Affiliation Sample1 Sample2 Sample3

OTU1 SpeciesA 0 500 0

OTU2 GenusA 200 41 100

OTU3 SpeciesB 1000 100 1000
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Step 1: construct real amplicon sequences
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Step 2: Assign a taxonomy to sequences

Is that easy?
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Bioinformatics solutions

MG-RAST (2008)
Mothur (2009)
Qiime (2010)
UPARSE (2013)
FROGS (2014)
DADA2 (2016)
Qiime2 (2019)
...
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Main di�erences

Ease of use
command line vs graphical interfaces
fitting complexity

Scalling
Paradigm: Clustering or denoising
Chimera detection
Taxonomic affiliation method

with training set
blast alignment
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Easy to use for biologists
Last updated and adapted tools
Innovative affiliation tag to
highlight databases conflicts
and uncertainties
Designed by a group of experts
of metabarcoding analyses
Better accuracy than other
tools from 16S and ITS
simulated and real data
Complete informations

FROGS: Find Rapidly OTUs with Galaxy Solution

Escudié et al (2007) 67 / 123

https://trainings.migale.inrae.fr/posts/2021-09-14-module20/content/frogs.toulouse.inra.fr
https://doi.org/10.1093/bioinformatics/btx791
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Switch to TP: GalaxySwitch to TP: Galaxy
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Sequencing dataSequencing data
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Content of sequenced fragments
The expected amplicon sequence

ACTGGGTGTAAGAGCT

The primers are sequenced too

ACTGACTGGGTGTAAGAGCTCTTA

With two fragments:

R1 ACTGACTGGGTGTAAG
R2 TAAGAGCTCTTACACC
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Content of sequenced fragments in multiplexed �le
Barcodes are added to each extremity

TTTTACTGACTGGGTGTAAGAGCTCTTACCCC

With two fragments:

R1 TTTTACTGACTGGGTG
R2 GGGGTAAGAGCTCTTA
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Demultiplexing

Assign each read to FASTQ files depending on barcode found
BARCODE FILE is expected to be tabular:

first column corresponds to the sample name (unique, without
space)
second to the forward sequence barcode used (None if only reverse
barcode)
optional third is the reverse sequence barcode (optional)
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Switch to TP: FROGS DemultiplexSwitch to TP: FROGS Demultiplex
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FASTQFASTQ
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FASTQ syntax
The FASTQ format consists of 4 sections:

1. A FASTA-like header, but instead of the >  symbol it uses the @  symbol.
This is followed by an ID and more optional text, similar to the FASTA
headers.

2. The second section contains the measured sequence (typically on a
single line), but it may be wrapped until the +  sign starts the next
section.

3. The third section is marked by the +  sign and may be optionally
followed by the same sequence id and header as the first section

4. The last line encodes the quality values for the sequence in section 2,
and must be of the same length as section 2.
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FASTQ syntax
Example

@SEQ_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

77 / 123



FASTQ quality
The weird characters in the 4th section are the so called “encoded”
numerical values. Each character represents a numerical value: a so-
called Phred score, encoded via a single letter encoding.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI

|    |    |    |    |    |    |    |    |

0....5...10...15...20...25...30...35...40

|    |    |    |    |    |    |    |    |

worst................................best
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FASTQ quality
The quality values of the FASTQ files are on top. The numbers in the
middle of the scale from 0 to 40 are called Phred scores. The numbers
represent the error probabilities via the formula:

Error=10ˆ(-P/10) It is basically summarized as:

P=0 means 1/1 (100% probability of error)
P=10 means 1/10 (10% probability of error)
P=20 means 1/100 (1% probability of error)
P=30 means 1/1000 (0.1% probability of error)
P=40 means 1/10000 (0.01% probability of error)
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FASTQ quality encoding speci�cities
There was a time when instrumentation makers could not decide at what
character to start the scale. The current standard shown above is the so-
called Sanger (+33) format where the ASCII codes are shifted by 33. There
is the so-called +64 format that starts close to where the other scale ends.
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FASTQ �les
R1

@id1:1

ACTGACTGGGTGTAAG

+

EF!![!:;;;;;::;A

R2

@id1:2

TAAGAGCTCTTACACC

+

;:,??!!???;..FFF
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FASTQ �les
It is crucial to check the quality of the raw data

expected number of files?
expected number of reads per file?
data quality?

Do not start an analysis if something wrong

Unusefull if some data are missing
You can (have to) discuss with the sequencing platform to
understand
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Switch to TP: Quality controlSwitch to TP: Quality control

83 / 12383 / 123



Quality pro�les
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PreprocessPreprocess
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Preprocess

Remove non-biological informations
primers, barcodes, remaining sequencing primers...

Filter on length
Filter on nucleotide content
Overlap reads if possible
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Overlap
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Switch to TP: FROGS PreprocessSwitch to TP: FROGS Preprocess
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ClusteringClustering
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Sequencing data are noised
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OTU paradigm

Operational Taxonomic Unit
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ASV paradigm

Amplicon Sequence Variants

ASV are inferred by a de novo process in which biological sequences are discriminated from errors on the

basis of the expectation that biological sequences are more likely to be repeatedly observed than are error-

containing sequences. 92 / 123



ASV promises
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Operational Taxonomic Units
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OTUs construction strategies

De novo OTU picking
by choosing a fixed sequenced dissimilarity
by relying on a small local linking threshold, representing the
maximum number of differences between two amplicons

Closed-reference OTU picking
by using a reference databank
discards all reads not similar to the reference databank

Open-reference OTU picking
by using a reference databank
de novo clusters remaining reads
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Fixed sequence dissimilarity: the traditional 97%...
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... is input order dependent
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97%?
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Swarm: A smart idea

Mahé et al (2015) ; Mahé et al (2014) 99 / 123

https://doi.org/10.7717/peerj.1420
https://doi.org/10.7717/peerj.593


Swarm

A robust and fast clustering method for amplicon-based studies
The purpose of swarmis to provide a novel clustering algorithm to
handle large sets of amplicons
swarm results are resilient to input-order changes and rely on a small
local linking threshold d, the maximum number of differences
between two amplicons
swarm forms stable high-resolution clusters, with a high yield of
biological information
Default: forms a lot of low-abundant OTUs that are in fact artifacts and
need to be removed

Mahé et al (2015) ; Mahé et al (2014) 100 / 123

https://doi.org/10.7717/peerj.1420
https://doi.org/10.7717/peerj.593


d: the small local linking threshold
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Swarm steps
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Switch to TP: FROGS clusteringSwitch to TP: FROGS clustering
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Chimera removalChimera removal
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Chimera
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Chimera detection strategies
Reference based: against a database of «genuine» sequences

De novo: against abundant sequences in the samples

FROGS uses vsearch as chimera removal tool

Rognes et al (2016) 106 / 123

https://doi.org/10.7717/peerj.2584
https://doi.org/10.7717/peerj.2584


Sample-cross validation
FROGS adds a sample-cross validation
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Chimera rates in samples
From 5 to 40% in 16S data

Few with ITS (<10%)

Ward et al (2012) 108 / 123

https://doi.org/10.1371/journal.pone.0039315


Switch to TP: FROGS remove chimeraSwitch to TP: FROGS remove chimera
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Abundance �ltersAbundance �lters
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Filters
Scientific considerations :

Low abundant sequences are often chimeric
Impossible to distinguish rare biosphere and artefacts
Better accuracy after removing singletons
Smart to use replicates to keep good OTUs
Contaminations?
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Switch to TP: FROGS �ltersSwitch to TP: FROGS �lters
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Taxonomic a�liationTaxonomic a�liation
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Taxonomic a�liation
Blast
RDP-classifier
IDTAXA
QIIME
SINTAX
...
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Bootstrap confidence Precision

RDP classi�er caveats

Wang et al (2007) 115 / 123

https://doi.org/10.1128/AEM.00062-07
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Advantages of FROGS a�liation
Gives %cov & %id informations
Gives all hits in a multi-affiliation file

Allows a smart correction sometimes (hits with same Species but
different strains)
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Switch to TP: FROGS a�liation OTUSwitch to TP: FROGS a�liation OTU

119 / 123119 / 123



PhylogenyPhylogeny
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Phylogenetic similarity gives an other information to unknown OTUs

Chakraborty et al (2020) 121 / 123

https://doi.org/10.1016/j.heliyon.2019.e03089


Phylogenetic tree
FROGS allows you to build a phylogenetic tree:

Mafft for doing multiple sequence alignments
Fasttree to build the rooted phylogentic tree
Essential to compute Unifrac distances

Not always possible if sequence diversity is too high (e.g. ITS)
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After this training... the real life
Specific to FROGS

frogs-support@inrae.fr

Migale support

help-migale@inrae.fr

Want to collaborate with us?

https://migale.inrae.fr/ask-data-analysis
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