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Presentation

I My name is...

I I’m working...

I My skills are...

I My interests are...

I I hope to be able to...
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Objectifs

I Connaître le vocabulaire et les concepts statistiques utiles pour analyser
des données type RNA-Seq

I Savoir effectuer une analyse différentielle dans quelques cas standards à
l’aide de logiciel R

I Comprendre le matériel et méthode d’un article du domaine

I Evaluer la pertinence d’une analyse RNA-Seq en identifiant les éléments
clefs et comprendre les particularités liées à la nature des données
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Modalités pratiques

Horaires

I lundi : 9h30-17h

I mardi : 9h30-17h

RStudio

I RStudio de migale https://rstudio.migale.inrae.fr
un login/mdp par apprenant

I Vous garderez le même compte (et poste) pour les deux jours de la
formation.

I N’hésitez pas à demander des pauses en cas de besoin.
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Programme : alternance Cours / TP

I Explorer les données

I Normaliser les données de comptage

I Identifier les transcrits différentiellement exprimés

I Se sensibiliser aux tests multiples

I S’initier à la visualisation et l’analyse de voies métaboliques

Le tout avec R dans l’environnement RStudio.
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TP

R and RStudio environment

R Packages

I DESeq2

I edgeR

also available in Galaxy environment.
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DESeq2 package

Reference
citation("DESeq2")
Michael I Love, Wolfgang Huber and Simon Anders (2014): Moderated
estimation of fold change and dispersion for RNA-Seq data with DESeq2,
Genome Biology

Tutorial
Love, MI and Anders, S and Kim, V and Huber, W (2016), RNA-Seq workflow:
gene-level exploratory analysis and differential expression,
http://openr.es/7pm, 10.12688/f1000research.7035.2
rnaseqGene package
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DESeq2 package

Installation of the package

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager") BiocManager::install("DESeq2")

To use an installed package, we have to load it into the current
session
library(DESeq2)
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edgeR package

Reference
citation("edgeR")
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.”
Bioinformatics, 26(1), 139-140.
McCarthy, J. D, Chen, Yunshun, Smyth, K. G (2012). “Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological
variation.” Nucleic Acids Research, 40(10), 4288-4297.

Tutorial
Chen, Y, Lun, ATL and Smyth, GK. (2016) From reads to genes to pathways:
differential expression analysis of RNA-Seq experiments using Rsubread
and the edgeR quasi-likelihood pipeline [version 2; peer review: 5
approved]. F1000Research,
https://doi.org/10.12688/f1000research.8987.2.
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edgeR package

Installation of the package

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager") BiocManager::install("edgeR")

To use an installed package, we have to load it into the current
session
library(edgeR)
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Transcriptomics

Transcriptome: Complete set of transcripts and their level of expression, for a
defined population of cells. Unlike the genome, the
transcriptome is dynamic and can be modulated by both
internal and external factors. (Velculescu et al, 1997)

The aims of transcriptomics:
I to quantify the changing expression levels of each transcript under

different biological conditions (differential analysis);
I to catalogue all species of transcript, including mRNAs, non-coding RNAs

and small RNAs;
I to determine the transcriptional structure of genes: splicing patterns,

post-transcriptional modifications;
I to discover allele-specific expression.

Estimate of RNA levels in a typical mammalian cell (Palazzo et al., 2015).
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Which high-throughput sequencing technology to choose?
Illustrate the dynamic and changing nature of sequencing based on the number of reads and read length.
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A generic roadmap for RNA-Seq data analyses

Conesa et al, Genome Biology 2016
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RNA-seq data analysis workflow for differential gene
expression

Stark et al., Nature Reviews Genetics 2019
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Source: H. Varet, Institut Pasteur

Module 16: Analyse statistique de données RNA-Seq 17/115



Source: H. Varet, Institut Pasteur
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A typical raw dataset

S1 S2 . . . Sj . . . Sn

Gene 1 16 9 . . . y1j . . . 15
Gene 2 4448 3973 . . . y2j . . . 3964

. . . . . . . . . . . . . . . . . . . . .
Gene i yi1 yi2 . . . ygj . . . yin

. . . . . . . . . . . . . . . . . . . . .
Gene G 59 164 . . . yGj . . . 143

Seq. depth 6865057 11127087 . . . nj =
∑G

g=1 ygj . . . 11320226

ygj = number of sequences from sample j assigned to gene g.

Remark: one row = one region of interest (gene, exon, transcript, · · · ).
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Example Data from Fu et al. (Nature Cell Biology, 2015)

RNA-Seq profiles of mouse mammary gland

Expression profiles of

I basal stem-cell enriched cells (B) and committed luminal cells (L)

I in the mammary gland of virgin, pregnant and lactating mice.

The dataset consists of a matrix Y = [ygj ] or data frame (gene × sample) of
counts.

I Each row g = one gene

I Each column j = one experimental sample
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Your turn ! Exercise 1 - Description of the biological
experiment

Part1
I Import the data in R

I Data visualization

Part2
I Create a single grouping factor condition combining CellType and Status

I Check the number of replicates per condition
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Your turn ! Exercise 2 - Formatting the count data

Part1
I Import the count data in R

I Create a data.frame that contains only the counts

I Visualize the first and last lines

Part2
I Have a look at the column names

I Rename rownames of your data.frame using EntrezGeneID.
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Your turn ! Exercise 3 - Creating a DGEList

Part1
I Convert geneCount to y DGEList with DGEList()

I Examine the elements of y

I Give the number of genes

Part2
I Provide samples and group argument giving the experimental condition

for each sample

I Set remove.zeros to TRUE. How many genes with all zero counts are
removed?

Challenge

I Add annotation information for each gene into y DGEList object. We will
use org.Mm.eg.db package which gives genome wide annotation for
Mouse based on mapping using Entrez Gene identifiers.
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Introduction to statistical analysis of expression data with R
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Data transformation (for visualisation or clustering)

I Pseudo-counts
ỹ = log2(y + k)

where y is the count values and k some chosen positive constant.

I Variance-stabilizing transformation
DESeq2::varianceStabilizingTransformation

I Regularized logarithm transformation DESeq2::rlogTransformation
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Data transformation (for visualisation or clustering)

I VST: much faster to compute and less sensitive to high count outliers
than the rlog.

I rlog tends to work well on small datasets (n < 30), potentially
outperforming the VST when there is a wide range of sequencing depth
across samples (an order of magnitude difference).

I The authors recommend VST for medium-to-large datasets (n > 30).
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Principal Component Analysis (PCA)

Aim
To reduce multidimensional datasets to lower dimensions analysis

How ?
Transformation of a set of observations of possible correlated variables (genes)
into a set of values of linearly uncorrelated variables (principal components)

I Property: the first principal component has the largest possible variance.

I PCA is sensitive to the scaling of the data.

In DESeq2, the PCA is performed on the top genes selected by highest row
variance (ntop argument) of the plotPCA function
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DESeq2::plotPCA

Mouse mammary gland dataset (Fu et al. 2015), PCA plot
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edgeR::plotMDS

MDSPlot Multidimensional scaling plot
A means of visualizing the level of similarity of individual cases of a dataset.
The distances between points on the plot reflects the level of similarity between
them. The argument gene.selection of the plotMDS edgeR function
corresponds to top genes chosen for the calculation of the MDS.

I common : top genes with the largest root-mean-square deviations
between samples

I pairwise (default value) : a different set of top genes is selected for each
pair of samples
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edgeR::plotMDS

Mouse mammary gland dataset (Fu et al. 2015), MDS plot
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Your turn ! Exercise 4 - Data filtering

Part1
I Calculate counts-per-million (cpm)

Part2
I Keep genes if they are expressed at a counts-per-million (cpm) above 0.5

in at least two samples corresponding to the number of replicates

I How many genes are kept?
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Your turn ! Exercise 5 - Quality Control

Part1
Barplot of library sizes
I Explore graphically library size with bar chart representation

I Add color on bar for each group

Multimensional scaling (MDS) plot
I Produce a Multidimensional scaling plot (MDSplot)

I What is the greatest source of variation in the data (i.e. what does
dimension 1 represent)?

I What is the second greatest source of variation in the data?

Part2
I Explore graphically library size with ggplot2 package to make beautiful

and customizable plots
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Introduction to statistical analysis of expression data with R
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Modélisation statistique

Définir un modèle statistique permettant de décrire le phénomène d’intérêt.

modèle ?

I une formule mathématique,

I une représentation simplifiée de la réalité

I qui fait des hypothèses explicites, potentiellement fausses

I et permet de raisonner.

statistique ?

On va supposer que le processus qui a généré les observations est
stochastique.

Traduire la ou les questions biologiques en terme statistique. Revient souvent
à faire des tests sur les paramètres du modèle.
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Comment s’y prendre ?

The formulation of a problem is often more essential than its solution which
may be merely a matter of mathematical or experimental skill. Albert Einstein

Planification expérimentale

Cette étape permet à partir d’un modèle et de premières données de définir le
plan d’expérience optimal.

Dans la pratique, il est fréquent que les expériences soient produites en se
contentant d’une formulation verbale de la démarche, en faisant varier
quelques facteurs d’intéret et en ajustant le nombre de répétitions aux
contraintes expérimentales ou budgétaires.
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Démarche

Bien comprendre . . .

I le contexte

I les questions

I comment les données sont recueillies

Identifier . . .

I l’unité statistique, élément de base sur lequel des données sont
observées ou mesurées.

I la ou les variables d’intérêt ou à expliquer→ Y
I les sources de variabilité
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Your turn ! Mouse mammary gland dataset

What are experimental units ? Factors ? Discuss biological questions.
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Differential analysis
Identification of differentially expressed (DE) genes

A gene is declared differentially expressed (DE) between two conditions if
the observed difference is statistically significant, i.e. greater than a natural
random variation.

I Need of statistical tools to make a decision.
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RNA-sequencing

# of reads mapped to

Gene 1 Gene 2 … Gene m
    25       320    …    23

Random 
fragmentation

Reverse 
transcription

mRNAs from a sample

Adapted from Li et al. (2011)

Fragmented mRNAs cDNAs

A vector of counts

counting

mapping

PCR 
amplification & 
sequencing

mapped reads A list of reads

from Gene 19

from Gene 23
…

from Gene 56

ATTGCC...

GCTAAC...
…

AGCCTC...

__ _ __

_ __
…
__ __ _

__ _ __

_ __
…
__ __ _

_____

___
…
_____
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Statistical issues of gene expression analysis from RNA-Seq
experiment

I A large number of genes and few replicates

I Non-negative integers with asymmetric distribution

I From 0 up to millions with different variance within different parts of the
dynamic range (heteroskedasticity)

I Systematic sampling biases, e.g. the total number of sequences (=
library size) is not the same for all the samples
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A typical raw dataset

S1 S2 . . . Sj . . . Sn

Gene 1 16 9 . . . y1j . . . 15
Gene 2 4448 3973 . . . y2j . . . 3964

. . . . . . . . . . . . . . . . . . . . .
Gene i yi1 yi2 . . . ygj . . . yin

. . . . . . . . . . . . . . . . . . . . .
Gene G 59 164 . . . yGj . . . 143

Seq. depth 6865057 11127087 . . . nj =
∑G

g=1 ygj . . . 11320226

ygj = number of sequences from sample j assigned to gene g.

Remark: one row = one region of interest (gene, exon, transcript, · · · ).
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Normalization or how to make measurements comparable ?

Definition
Normalization is a process designed to identify and correct technical biases
removing the least possible biological signal. This step is technology and
platform-dependant.

Technical biases
Some biases may be controlled by an adapted experimental design or a good
experimental protocol.
Normalization aims to correct systematic uncontrollable biases such as those
induced by sequencing process.

Within and between normalization
Within-sample normalization enabling comparisons of fragments (genes) from
a same sample.
Between-sample normalization enabling comparisons of fragments (genes)
from different samples.
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Sources of variability

Read counts are proportional to expression level, gene length and sequencing
depth (same RNAs in equal proportion).

Within-sample

I Gene length

I Sequence composition (GC content)

Between-sample

I Depth (total number of sequenced and mapped reads)

I RNA-composition or presence of majority fragments

I Sequence composition du to PCR-amplification step in library preparation
(Pickrell et al. 2010, Risso et al. 2011)
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Normalization and differential expression (DE) analysis

DE analysis concerned with relative changes in expression levels between
conditions rather than estimating absolute expression levels.

Normalization: identify and correct technical effects related to the experimental
conditions (sample-specific effects) without altering the biological signal.

Sequencing depth
RNA composition

from Evans et al. (2017)
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Typology of normalization methods
according to the underlying assumptions (Evans et al. 2017).

Normalization by library size

Same total expression, same amount of mRNA/cell for each experimental
condition.

Normalization by distribution or testing

I DE and non-DE genes have the same behaviour.

I Balanced expression (up/down).

Normalization by controls

I Existence of control (invariant set of genes).

I Control genes behave like non-control genes (same technical effects).

Module 16: Analyse statistique de données RNA-Seq 46/115



Understanding sequencing data

Relative library size

ygj : raw read counts of gene g in sample j

nj =
∑G

g=1 ygj : relative library size of sample j after sequencing

Warning: nj have only a technical, not a biological meaning.

Absolute counts and effective library size

agj : unknown absolute counts (average number of mRNAs from a given gene
in the cells before seq.) We observed counts prop. to agj and Lg , the length of
the gene g.

Effective library size:
∑G

g=1 agj .
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Normalization by library size: effective Library Size concept

Motivation
Different biological conditions express different RNA repertoires, leading to
different total amounts of RNA

Assumption

A majority of transcripts is not differentially expressed

Aim
Minimizing effect of (very) majority sequences

I Trimmed Mean of M-values, Robinson and Oshlack 2010 (edgeR)

I Relative Log-Expression, Anders and Huber 2010 (DESeq2)
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Normalization by library size: Trimmed Mean of M-values
(TMM)

Idea: we may not estimate the total ARN production in one condition but we
may estimate a global expression change between two conditions from non
extreme Mg distribution.
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Filter on:

I transcripts with nul counts,

I the 30% more extreme
M r

gj = log2(
ygj/Nj

ygr/Nr
) values,

I the 5% more extreme
Ar

gj = 0.5× [log2(
ygj

Nj
) + log2(

ygr

Nr
)]

values.
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Normalization by library size: Trimmed Mean of M-values

1. Select the reference sample r

2. Define a set of genes G∗ for which neither the M r
gj or the Ar

gj value was
trimmed

3. Calculate the scaling factors TMM(r)
j such as

log2(TMM(r)
j ) =

∑
g∈G∗ w r

gjM
r
gj∑

g∈G∗ w r
gj

with w r
gj =

Nj−ygj

Nj ygj
− Nr−ygr

Nr ygr

4. Rescale the factors to avoid dependance on a specific reference sample

ŝj =
TMM(r)

j

exp(
∑
` TMM(r)

` /n)
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Normalization by library size: Relative Log-Expression
method (RLE, DESeq)

1. Compute a pseudo-reference sample: geometric mean across samples
(less sensitive to extreme value than standard mean)

y r
gj =

(
πn

j=1y1/n
gj

)
with ygj number of reads in sample j assigned to gene j , n number of samples in
the experiment.

2. Calculate scaling factors

ŝj = median
g:y r

gj 6=0

ygj

y r
gj
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Normalization by library size: Some remarks about TMM and
RLE normalization

Interpretation of the scaling factors

I The normalization factors of all the libraries multiply to 1.

I ŝj < 1: a small number of high count genes are monopolizing the
sequencing. ⇒ Need of downscaling.

condA.1 condA.2 condA.3 condB.1 condB.2 condB.3
RLE 1.05 1.05 0.87 1.06 1.06 0.93

TMM 1.02 1.00 0.97 1.01 1.05 0.95

Model-based normalization, not transformation

In edgeR and DESeq2, normalization factors = correction factors that enter
into the model.
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Where conventional methods fail

Figure: from Evans et al. (2017)
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Normalization by controls

Assumptions

I Existence of controls and behavior as expected (negative controls =
non-DE)

I Controls behave like non-control genes (affected by same technical
effects)

Methods

I Housekeeping genes

I "Conventional normalization" with Spike-ins

I Factor analysis of controls: Remove Unwanted Variation (RUV) (Risso et
al., 2014)
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Normalization: key points (1/2)
Dillies et al. 2013, Evans et al. 2017

I A normalization is needed and has a great impact on the DE genes,

I RNA-seq data are affected by technical biaises (total number of mapped
reads per lane, gene length, composition bias...),

I Do not normalize by gene length in a context of differential analysis,
I Performant and robust methods in a DE analysis context on the gene

scale:
I Trimmed Mean of M-values, (Robinson and Oshlack 2010, edgeR)
I Relative Log-Expression, (Anders and Huber 2010, DESeq2)
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Normalization: key points (2/2)
Dillies et al. 2013, Evans et al. 2017

I The correct normalization method to use depends on which assumptions
are valid for the biological experiment:
I same / different amount of mRNA / cell
I majority of genes is invariant between conditions, low number of DE genes
I symmetry of differential expression
I absence of high count genes, similar library size

I Incorrect normalization leads to problem in downstream analysis, such as
inflated FP.

I There are examples of global shifts in expression that violate assumptions
of conventional normalization methods, requiring controls.
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Your turn ! Exercise 6 - Normalization

Part1
I Calculate normalization factors

Part2
I Perform a bar chart to represent normalization factors

I Add a horizontal line fixed at 1

I Add color on bar corresponding to each group
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Differential Analysis
Identification of differentially expressed genes (DE)

A gene is declared differentially expressed (DE) between two conditions if the
observed difference is statisticially significant, ie more than only du to natural
random variation.

I Statistical tools are necessary to take this decision.

I The main steps are : experimental design, normalisation and differential
analysis, multiple testing.
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Fold Change approach and ideal cut-off values
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Fold Change approach and ideal cut-off values

FCg =
xg.

yg.

Gene CondA1 CondA2 CondB1 CondB2 FC pvalue
1 Gene1 5.00 7.00 2.00 2.00 3.00 0.06
2 Gene2 800.00 1000.00 350.00 250.00 3.00 0.03
3 Gene3 700.00 1100.00 350.00 250.00 3.00 0.10
4 Gene4 500.00 1300.00 550.00 50.00 3.00 0.33

FC does not take the variance of the samples into account.
Problematic since variability in gene expression is partially gene-specific.
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Differential analysis

Aim : To detect differentially expressed genes between two conditions

I Discrete quantitative data

I Few replicates

I Overdispersion problem

Challenge: method which takes into account overdispersion and few number of
replicates

I Proposed methods : edgeR, DESeq(2) for the most used and known
Anders et al. 2013, Nature Protocols

I An abundant litterature

I Comparison of methods : Pachter et al. (2011), Kvam and Liu (2012),
Soneson and Delorenzi (2013), Rapaport et al. (2013), Schurch et al.
(2016)
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Hypothesis testing

Definition
A general method for testing a claim or hypothesis about a parameter in a
population, using data measured in a sample.

Four ingredients

1. Experimental data x1, x2, . . . , xn

2. Statistical model : assumptions about the independence or distributions of
the observations with parameter θ

3. Hypothesis to test : assumption about one parameter of the distribution

4. Region of rejection (or critical region): the set of values of the test statistic
T for which the null hypothesis H0 is rejected. T = f (X1,X2, . . . ,Xn) is a
function which summarizes the data without any loss of information about
θ. The distribution of T under H0 is known.
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Critical region and p-value

p-value p(t)

For a realisation t of the T test statistic p(t) is the probability (calculating under
H0) of obtaining a test statistic at least as extreme as the one that was actually
observed.

In bilateral case :
p(t) = PH0{|T | ≥ |t|}

The p-value measures the agreement between H0 and obtained result.

Link with the critical region

PH0{T ∈ R} = P{p(t) ≤ α}

with α the significance level.
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Differential analysis gene-by-gene- with replicates

For each gene g

Is there a significant difference in expression between condition A and B?

I Statistical model (definition and parameter estimation) - Generalized
linear framework Ygjk follows f(θgjk)

I Hypothesis to test : H0g Equality of relative abundance of gene g in
condition A and B vs H1g non-equality

I Critical region - Wald Test or Likelihood Ratio Test

The Poisson Model
Let be Ygj the read count for gene g in sample j

I Ygj follows a Poisson distribution (µgj = sgj ∗ qgj ), with sgj library size and
log qgj =

∑
r xjrβgr , X = [xjr ] is the design matrix and β is the vector of

coefficients.

I Property : V(Ygj) = E(Ygj) = µgj
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Mean-Variance Relationship

From D. Robinson and D. McCarthy
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Overdispersion in RNA-seq data

Counts from biological replicates tend to have variance exceeding the mean (=
overdispersion relative to the Poisson distribution). Poisson describes only
technical variation.

What causes this overdispersion?

I Correlated gene counts

I Clustering of subjects

I Within-group heterogeneity

I Within-group variation in transcription levels

I Different types of noise present...

In case of overdispersion, ↑ of the type I error rate (prob. to declare incorrectly
a gene DE).
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Alternative : Negative Binomial Models

A supplementary dispersion parameter φ to model the variance

Ygj follows a Negative Binomial distribution (mean = µgj , dispersion = φg)

Poisson vs Negative Binomial Models
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Types of noise in data

1. Shot noise: unavoidable noise inherent in counting process (dominant for
weakly expressed genes)

2. Technical noise: from sample preparation and sequencing, hopefully
negligable

3. Biological noise: unaccounted for differences between samples (dominant
for strongly expressed genes)

Estimation the dispersion (biological noise)

How to estimate a reliable dispersion from a very small number of replicates
(sometimes less than 5) ?

I gene-specific tests: lack of sensitivity (proportion of true positives among
positives) due to the lack of information

I common dispersion parameter for all tests→ many false positives
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Estimation the dispersion: the key question

One solution: compromise between gene-specific and common
dispersion parameter estimation

I edgeR: borrow information across genes for stable estimates of φ
3 ways to estimate φ (common, trended, tagwise)

I DESeq: data-driven relationship of variance and mean estimated using
parametric or local regression for robust fit across genes

Method Variance Reference
DESeq µ(1 + φµµ) Anders et Huber (2010)
edgeR µ(1 + φµ) Robinson et Smyth (2009)
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the DESeq2 pipeline

Model
Ygj ∼ NB(mean = µgj , dispersion = φg)
µgj = sgj ∗ qgj

log qgj =
∑

r xjrβgr , where X = [xjr ] is the design matrix and β is the vector of
coefficients.

Main steps performed by the DESeq function:

1. estimation of size factors sgj = sj by estimateSizeFactors

2. estimation of dispersion by estimateDispersions

3. negative binomial GLM fitting for βg and Wald statistics by
nbinomWaldTest

Remark: the method implemented in the DESeq2 package is quite different
than the method proposed in the DESeq paper (Anders and Huber 2010)
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Estimating dispersion parameters

estimateDispersions
1. calculation of a preliminary gene-wise dispersion estimates by maximum

likelihood
few samples→ strong fluctuation aroung the true values;

2. fitting of a trend curve to capture the dependence of these estimates on
average expression strength;

3. the final estimates of dispersion results in a shrinkage of the noisy
gene-wise estimates towards a consensus.
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Shrinkage estimation of logFCs

Observation
Variance of logFCs depends on mean count (heteroskedasticity)
logFC estimates for genes with low read count have a strong variance

→ effect sizes difficult to compare across the dynamic range of the data

Shrinkage estimation

DESeq2 propose to shrink logFCs estimates toward zero in a manner such
that shrinkage is stronger when the available information for a gene is low
(because low counts, high dispersion or few degrees of freedom)
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More than two conditions - GLM framework

Ygj ∼ NB(mean = µgj , dispersion = φg) with log(µgj) = log(sj) + log(qgj) in
which:

I sgj is the (gene-specific g) library size for sample j ,

I log qgj =
∑

r xjrβgr where X = [xjr ] is the design matrix and β is the
vector of coefficients.

A Generalized Linear Model (GLM) allows to decompose the effects on the
mean of

I different factors,

I their interactions.
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More than two conditions - GLM framework
Alternative approach: linear model for count data (Law et al., 2014)

1. Data are transformed so that they are approximately normally distributed
(voom)

2. A linear Gaussian model is fitted (limma)
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Comparaison of 11 differential analysis methods
Soneson and Delorenzi, Rapaport et al. (2013), Schurch et al. (2016)

I The number of replicates matters!
I Small number of replicates (2-3) or low expression → be careful!!
I Large number of replicates (10 or so) or very high expression → method

choice does not matter much.
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Comparaison of 11 differential analysis methods
Soneson and Delorenzi, Rapaport et al. (2013), Schurch et al. (2016)

I Results are more accurate and less variable between methods if DE
genes are regulated in both directions.

I Outlier counts affect different methods in different ways
Removing genes with outlier counts or using non-parametric methods
reduce the sensitivity to outliers

I The dispersion estimation method matters! Allow tagwise dispersion
values is better.

I Normalization methods have problems when all DE genes are regulated
in one direction. Iterative approaches like TCC improve performance
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Interpretation - Statistical significance and practical
importance

I Practical importance and statistical significance (detectability) have little to
do with each other.

I An effect can be important, but undetectable (statistically insignificant)
because the data are few, irrelevant, or of poor quality.

I An effect can be statistically significant (detectable) even if it is small and
unimportant, if the data are many and of high quality.
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Your turn ! Exercises 7.1 and 7.2

Exercise 7.1 - Experimental design matrix
I Construct a design matrix with ‘model.matrix()‘

Exercise 7.2 - Estimating dispersion
Part1
I Compute the estimate of the common, trended and tagwise dispersions

across genes.

I What is the common dispersion value?

Part2
I Plot the genewise biological coefficient of variation (BCV) against gene

abundance (in log2 counts per million)

Challenge
I Plot variance against mean of counts per gene in log2 scale.
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Why is robustness 
needed? 

     NA19222 NA12287 NA19172 NA11881 NA18871 NA12872 NA18916 NA18856 NA19193 NA19140	
4004     0.0     1.9   178.1     0.0     0.5     0.0     0.0     0.0     0.0     0.0	
2538     2.0     0.6   235.5     6.8    60.2     1.0     0.0     0.0     2.5     1.3	
4962     3.5     0.6   429.5     1.0    35.9     0.0     0.4     0.0     0.0     4.7	
7921     1.0     5.1    78.9     2.9     0.0     0.0     0.8     0.0     0.0     0.4	
6115     0.0     1.3     0.0     1.9     0.0     0.5    46.1     0.0   100.1     1.3	
5156    13.8     1.3    30.7     0.0     7.1     0.0     0.0     1.0     0.0     1.3	
2527    23.7   111.0   228.8    77.0   129.5    10.0    45.3    27.4    26.3    19.1	
1115     2.0    15.2  1074.8    19.5    13.2    10.0    29.6     0.0     1.3     5.5	
3175     3.0     6.3   181.0     7.8     7.6     0.0     5.5     3.0     3.1     2.5	
7951     1.0    12.1    35.9     0.0     1.0     1.0     0.0     1.0     0.0     0.0	
7631     0.0     1.9     0.4     1.0     0.0     0.5    29.6     0.0    24.4     5.5	
3437    24.6    31.1   167.0     4.9    21.2     4.5     8.3    10.1     8.1     0.4	
          logFC   logCPM       LR       PValue          FDR	
4004 -10.413038 4.186203 30.07924 4.147469e-08 0.0002239513	
2538  -5.942865 4.963086 29.60406 5.299369e-08 0.0002239513	
4962  -6.387829 5.576979 26.06085 3.308237e-07 0.0009320406	
7921  -5.808379 3.183079 22.51927 2.080466e-06 0.0043960241	
6115   5.746084 3.921353 21.37010 3.786299e-06 0.0064003595	
5156  -4.573655 2.512035 20.13483 7.217026e-06 0.0101663841	
2527  -2.154480 6.128702 18.44343 1.750229e-05 0.0211327628	
1115  -4.575934 6.873996 18.14127 2.051076e-05 0.0211672325	
3175  -3.843458 4.473754 17.71318 2.568407e-05 0.0211672325	
7951  -4.786326 2.416892 17.66324 2.636730e-05 0.0211672325	
7631   4.311717 2.683367 17.57990 2.754846e-05 0.0211672325	
3437  -3.014484 4.821100 17.05690 3.627624e-05 0.0255505626	

LETTERS

Transcriptome genetics using second generation
sequencing in a Caucasian population
Stephen B. Montgomery1,2, Micha Sammeth3, Maria Gutierrez-Arcelus1, Radoslaw P. Lach2, Catherine Ingle2,
James Nisbett2, Roderic Guigo3 & Emmanouil T. Dermitzakis1,2

Gene expression is an important phenotype that informs about
genetic and environmental effects on cellular state. Many studies
have previously identified genetic variants for gene expression phe-
notypes using custom and commercially available microarrays1–5.
Second generation sequencing technologies are now providing
unprecedented access to the fine structure of the transcriptome6–14.
We have sequenced the mRNA fraction of the transcriptome in 60
extended HapMap individuals of European descent and have com-
bined these data with genetic variants from the HapMap3 project15.
We have quantified exon abundance based on read depth and have
also developed methods to quantify whole transcript abundance.
We have found that approximately 10 million reads of sequencing
can provide access to the same dynamic range as arrays with better
quantification of alternative and highly abundant transcripts.
Correlation with SNPs (small nucleotide polymorphisms) leads to
a larger discovery of eQTLs (expression quantitative trait loci) than
with arrays. We also detect a substantial number of variants that
influence the structure of mature transcripts indicating variants
responsible for alternative splicing. Finally, measures of allele-
specific expression allowed the identification of rare eQTLs and
allelic differences in transcript structure. This analysis shows that
high throughput sequencing technologies reveal new properties of
genetic effects on the transcriptome and allow the exploration of
genetic effects in cellular processes.

Genetic variation in gene expression is an important determinant of
human phenotypic variation; a number of studies have elucidated
genome-wide patterns of heritability and population differentiation
andare beginning tounravel the role of gene expression in the aetiology
of disease1–5. Interrogation of the transcriptome in these studies has
been greatly facilitated by the use of microarrays, which quantify tran-
script abundance by hybridization. However, microarrays possess
several limitations and recent advances in transcriptome sequencing
in second generation sequencing platforms have now provided single-
nucleotide resolution of gene expression providing access to rare tran-
scripts, more accurate quantification of abundant transcripts (above
the signal saturation point of arrays), novel gene structure, alternative
splicing and allele-specific expression6–14. Although RNA-Seq studies
have addressed issues of transcript complexity, they have not yet
addressed how genetic studies can benefit from this increased resolu-
tion to reveal novel effects of sequence variants on the transcriptome.

To understand the quantitative differences in gene expression
within a human population as determined from second generation
sequencing, we sequenced themRNA fraction of the transcriptome of
lymphoblastoid cell lines (LCLs) from 60 CEU (HapMap individuals
of European descent) individuals (from CEPH—Centre d’Etude du
Polymorphisme Humain) using 37-base pairs (bp) paired-end
Illumina sequencing. Each individual’s transcriptome was sequenced

in one lane of an Illumina GAII analyzer and yielded 16.96 5.9
(mean6 s.d.) million reads that were then mapped to the NCBI36
assembly of the human genome (Supplementary Fig. 1) usingMAQ16.
We subsequently filtered reads that had lowmapping quality,mapped
sex chromosomes or mitochondrial DNA and were not correctly
paired, which yielded 9.46 3.3 million reads. On average, 86% of
the filtered reads mapped to known exons in Ensembl version
54(ref. 17) and 15% of read pairs spanned more than one exon.
Evaluation of sequence andmapping qualitymeasures was preformed
to ensure that the data quality is acceptable for analysis (Sup-
plementary Fig. 2, also see methods).

We quantified reads for known exons, transcripts and whole genes.
Read counts for each individual were scaled to a theoretical yield of 10
million reads and corrected for peak insert size across corresponding
libraries. Each quantification was filtered to exclude those with miss-
ing data for. 10% of the individuals. For exons, this resulted in data
for 90,064 exons for 10,777 genes. Of these, 95% had on averagemore
than 10 reads, 38% more than 50 reads and 20% had a mean quan-
tification of$ 100 reads (Supplementary Fig. 3). For transcript quan-
tification, new methods needed to be developed to map reads
into specific isoforms18,19. We developed a methodology, called the
FluxCapacitor, to quantify abundances of annotated alternatively
spliced transcripts (see Methods). Using this method, we obtain rela-
tive quantities for 15,967 transcripts from 11,674 genes. For each
individual, we compared whole-gene read counts to array intensities
generated with Illumina HG-6 version 2 microarrays. Correlations
coefficients between RNA-Seq and array quantities and among
RNA-Seq samples were high and consistent with previous studies20

(Supplementary Figs 4 and 5). Finally, we explored whether the cor-
relation structure of abundance among exons could facilitate the
development of a framework that will allow the imputation of abund-
ance values for exons that are not screened, given a set of reference
RNA-Seq samples. This is the same principle as using the correlation
structure (Linkage Disequilibrium) of genetic variants to impute
variants from a reference to any population sample of interest21. For
eachof the10,777 genes,we assessed thepairwise correlationof all exons
and on average, any two pairs of exons within a gene were moderately
correlated (mean Pearson’s correlation R25 0.3786 0.261) (Sup-
plementary Fig. 6). This correlation increased with increase in total
number of reads present in each exon. It isworthnoting that the average
correlation coefficient between SNPs within the same recombination
hotspot interval in HapMap3 is R25 0.3266 0.174, indicating that the
correlation structure within genes is stronger and probablymore acces-
sibleby imputationmethodologies thanSNPs; however, this needs tobe
assessed in a tissue-specific context.

Association of gene expressionmeasured by RNA-Seq with genetic
variation was evaluated in cis with the use of 1.2 million HapMap3

1Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, 1211 Switzerland. 2Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK.
3Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Catalonia, 08003 Spain.

Vol 464 | 1 April 2010 |doi:10.1038/nature08903

773
Macmillan Publishers Limited. All rights reserved©2010

Nature, 2010 

Random split of dataset: n1=5; n2=5   Very little true differential expression 

Results driven by outliers 

CPMs 
(counts 
per 
million) 
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Dealing with outliers

NB framework
DESeq2, edgeR rely on the NB distribution which is versatile in having a mean
and dispersion parameter. Extreme counts in individual samples might not fit
well to the NB.

DESeq2 strategy

1. calculate Cook’s distance (measure of how much the fitted coefficients
would change if an individual sample were remove)

2. filter genes with outliers

Can inadvertently filter interesting genes
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Dealing with outliers

edgeR strategy : robust estimation (Zhou et al. 2014, Chen et al.
2017)

I edgeR::estimateDisp(y, design, robust = TRUE)
This option protect the empirical Bayes estimates against the possibility of
outliers genes with exceptionaly large or small individual dispersions.

I edgeR::glmQLFit(y, design, robust = TRUE)
This allows gene-specific priori df estimates, with lower values for outlier
genes and higher values for the main body of genes. Reduces the chance
of getting FP from genes with extreme dispersions and increases power
to detect the others as DE.
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Your turn ! Exercise 7.3 - Testing for DE genes

Part1
I Use glmFit to fit generalized linear model

I Use glmLRT to conduct likelihood ratio tests for one coefficient in the
linear model
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Creating a design matrix and contrasts

design <- model.matrix(~0+group)

contr.matrix <- makeContrasts(
C1 = B1-B2,
C2 = B2-B1)

Source: Law et al. 2018, package Bioconductor RNAseq123
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Your turn ! Exercise 7.3 - Testing for DE genes

Part2
I Construct a specific contrast defined by difference between lactate and

pregnant status within Basal CellType

I Compute likelihood ratio test for this contrast.

I Print the most differentially expressed genes.

I How many genes are up and down regulated between lactate and
pregnant status within Basal CellType?
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Differential Analysis : key points

I Methods dedicated to microarrays are not applicable to RNA-seq

I Small number of replicates (2-3) or low expression→ be careful!!

I Large number of replicates (10 or so) or very high expression→ method
choice does not matter much.

I Filtering the data(genes with outliers or low counts) may be interesting

I Don’t forget to correct for multiple testing !

Adapt the method to your data (nb of rep.)
Specific methods developped for few replicates.
The need for ’sophisticated’ methods decreases when the number of replicates
increases.
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Introduction to statistical analysis of expression data with R

Introduction

Exploratory analysis

Modelisation approach

Normalisation and Differential analysis
Normalization
Differential analysis

Multiple testing

Experimental design

Conclusion
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Multiple Testing

False positive (FP) (type I error : α) : A non differentially expressed (DE) gene
which is declared DE.

For all ’genes’, we test H0 (gene i is not DE) vs H1 (the gene is DE) using a
statistical test (calcul of a score)

Pb :
Let assume all the G genes are not DE. Each test is realized at α level
Ex: G = 10000 genes and α = 0.05→ E(FP) = 500 genes.
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Simultaneous test of G null hypotheses

Reality
Declared

non diff. exp.
Declared
diff. exp.

G0 non DE genes True Negatives (TN) False Positives (FP)

G1 DE genes False Negatives (FN) True Positives (TP)

G Genes N Negatives P Positives

Aim : minimize FP and FN.
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Standard approach to the multiple testing problem
Dudoit et al. (2003)

1. Computing a test statistic for each gene g

2. Applying a multiple testing procedure to determine which hypotheses to
reject while controlling a suitable defined type I error rate

Multiple testing prodecure

It controls a particular type I error rate at level α if the error rate is ≤ α when
the procedure is applied to produce a list of P rejected hypotheses (DE genes).
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The Family Wise Error Rate (FWER)

Definition
Probability of having at least one Type I error (false positive), of declaring DE at
least one non DE gene.

FWER = P(FP ≥ 1)

The Bonferroni procedure

I Either each test is realized at α = α∗/G level

I or use of adjusted pvalue pBonfg = min(1, pg ∗ G) and FWER ≤ α∗.
For G = 2000, ≤ α∗ = 0.05, α = 2.510−5.

Easy but conservative and not powerful.
When the number of tests increases, the FWER→ 1 with constant FP.
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The False Discovery Rate (FDR)

Idea: Do not control the error rate but the proportion of error
⇒ less conservative than control of the FWER.

Definition
The false discovery rate of Benjamini and Hochberg (1995) is the expected
proportion of Type I errors among the rejected hypotheses

FDR = E(FP/P) if P > 0 and 0 if P = 0

Prop

FDR ≤ FWER
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Standard assumption for p-value distribution

  

Source : M. Guedj, Pharnext
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The False Discovery Rate - Benjamini et Hochberg (95)

Principle: The number of declared positive elements P is given by the greater g
p(g) ≤ gα∗/G.

Prop

In case of independant tests, FDR ≤ (G0/G)α∗ ≤ α∗

Prop

FDR Benjamini-Hochberg : π0 = G0
G =1
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p-values histograms for diagnosis

Examples of expected overall distribution

(a) (b) (c)
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(a)

(a): the most desirable shape

(b): very low counts genes usually have large p-values

(c): do not expect positive tests after correction

Examples of not expected overall distribution
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(d)

(a): indicates a batch effect (confounding hidden variables)

(b): the test statistics may be inappropriate (due to strong correlation structure
for instance)

(c): discrete distribution of p-values: unexpected
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p-values histograms for diagnosis

Examples of not expected overall distribution

(a) (b) (c)
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(a): indicates a batch effect (confounding hidden variables)

(b): the test statistics may be inappropriate (due to strong correlation structure
for instance)

(c): discrete distribution of p-values: unexpected
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p-values histograms for diagnosis

Examples of expected or not overall distribution ?

(a) (b)
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Your turn ! Exercise 7.4 - Explore and save the results 1/2

Part1
I Plot the histogram of the raw pvalues. How do you interpret this plot?

I Produce a Volcano plot which displays log fold changes on the x-axis
versus a measure of statistical significance on the y-axis

I Plot a MA-plot. Interpret the plot

I Save the results of the differential analysis in a csv file

Part2
I Order results by raw pvalues

I Save all the differentially expressed genes up and down in separate files
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Your turn ! Exercise 7.4 - Explore and save the results 2/2

Challenge
I Create another contrast: difference between lactate and pregnant status

within Luminal CellType.

I Compare results with Venn diagram.

I How many genes are commonly differentially expressed?
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Venn diagramm and upset plot

jvenn (Bardou et al. 2014)

I Venn diagramm with the venn function
http://bioinfo.genotoul.fr/jvenn/

I How to export results ?

intervene Shiny app (Khan et Mathelier 2017)

https://asntech.shinyapps.io/intervene/

Venn diagramm Upset plot
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Multiple testing: key points

I Important to control for multiple tests

I FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER

Having a great confidence on the DE elements (strong control). Accepting to
not detect some elements (lack of power⇔ a few DE elements)

Controlling the FDR

Accepting a proportion of FP among DE elements. Very interesting in
exploratory study.
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Experimental Design

A good design is a list of experiments to conduct in order to answer to the
asked question which maximize collected information and minimize
experiments cost with respect to constraints.

I Rule 1: Well define the biological question, get together and collect a
priori knowledge (e.g. reference genome, splicing . . . ),

I Rule 2: Anticipate, Identify all factors of variation and adapt Fisher’s
principles (1935), collect metadata from experiment and sequencing,

I Rule 3: Choose a priori tools/methods for bioinformatics and statistical
analyses,

I Rule 4: Draw conclusions on results.

And do not forget: budget also includes cost of biological data acquisition,
sequencing data backup, bioinformatics and statistical analysis.
http://f1000.com/posters/1096840
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Rule 1: Well define the biological question

Choosing scientific problems on feasibility and interest [Alon 2009]

Make a choice
I Identify differentially expressed genes (between which conditions),

I Detect and estimate isoforms,

I Construct a de novo transcriptome.
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Rule 2: Factors of variation - Metadata (1)
Basic principles - Fisher (1935), George Box (1978)

To consult a statistician after an experiment is finished is often merely
to ask him to conduct a post-mortem examination. He can perhaps
say what the experiment died. (Ronald A. Fisher, 1938).

I Technical or/and biological replications

Biological replicate:
Repetition of the same experimental protocol

but independent data acquisition (several

samples).

Technical replicate:
Same biological material but independent

replications of the technical steps (several

extracts from the same sample).
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Rule 2: Factors of variation - Metadata (2)
Basic principles - Fisher (1935), George Box (1978)

Block what you can, randomize what you cannot. (George Box, 1978)

I Randomization
Process of random assignment of individuals to group, block. Reduces bias
caused by factors that have not been accounted for in the experimental design.

I Blocking
Isolating variation attributable to a nuisance variable which has an effect on the
response, but is of no interest to the experimenter (e.g. run, day, sex...).
Experimental units are grouped into homogeneous block. Random allocation
within each block.
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Rule 2: Factors of variation - Metadata (3)
Basic principles - Fisher (1935), George Box (1978)

Questions:

I Give the levels of replication: different operator or machines from the same

technology, different variants of the protocol, different strains, different animals...

I Do you rather do five replicates on the same leaf, or one replicate each on
three different leaves? How does the effect generalize to different leaves?

I Each treatment level is represented in each Block, but only once. This is a
Randomized Complete Block Design. Why is this design useful? Why is
each treatment level is represented only once within blocks?

I Two sequencing lanes are available and two treatments are tested.
Samples fron one treatment level are assigned on the same lane. Why is
this design unsuitable?
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Rule 2: Factors of variation - Metadata (3)

(Source PEPI IBIS)

“Sequencing technology does not
eliminate biological variability.”
(Nature Biotechnology Correspondence, 2011)

Anticipate

I Identify factors of variation:
controllable bias and technical
specificity,

I Collect metadata from experiment
and sequencing.

lane effect < run effect < library prep effect << biological effect
(Marioni, 2008), (Bullard, 2010)
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Rule 3: Choose bioinformatics and statistics models (1)

I Related to technical choices
Choice of sequencing technology, type of reads (paired-end ?), type of sequencing

(directional ?), library preparation protocol

I Related to biological question
I How many reads, which sequencing depth? which number of biological

replicates ?

Why increasing the number of biological replicates?

I To generalize to the population level

I To estimate with a higher degree of accuracy variation in individual
transcript (Hart, 2013)

I To improve detection of DE transcripts and control of false positive rate:
TRUE with at least 3 (Sonenson 2013, Robles 2012)

I To focus on detection of low mRNAs, inconsistent detection of exons at
low levels (<5 reads) of coverage (McIntyre, 2011)
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Rule 3: Choose bioinformatics and statistics models (2)

More biological replicates or increasing sequencing depth?
It depends! (Haas, 2012), (Liu, 2014)

I DE transcript detection: (+) biological replicates

I Construction and annotation of transcriptome: (+) depth and (+) sampling
conditions

I Transcriptomic variants search: (+) biological replicates and (+) depth

Support

I An experimental design using multiplexing,

I Tools for experimental design decisions: Scotty (Busby, 2013),
RNAseqPower (Hart, 2013), PROPER (H. Wu, 2014), RNAseqPS (Guo,
2014)

Multiplexing:
Tag or bar coded with specific sequences added during library construction and that
allow multiple samples to be included in the same sequencing reaction (lane).
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Experimental Design: Conclusion

A good design is a list of experiments to conduct in order to answer to the
asked question which maximize collected information and minimize
experiments cost with respect to constraints.

I Well define the biological question, get together and collect a priori
knowledge (e.g. reference genome, splicing . . . ),

I Anticipate, Identify all factors of variation and adapt Fisher’s principles
(1935), collect metadata from experiment and sequencing,

I Include independent biological replicates to ensure reproducibility and
accuracy of results
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Exploring and interpreting results - a lot of to do

Exploration with basic plots

I the histogram of raw p-values

I the M-A plot

I an ordination plot

I a heatmap

Comparaisons of DE genes

I the venn diagramm

I the upset plot
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General conclusions and perspectives

Practical conclusions

I Need to collaborate between biologists, bioinformaticians et statisticians
and in a ideal world since the project construction

I Collect knowledge on the project and metadata from experiment and
sequencing

I Choose and adapt the methods and tools to the asked question (no
pipeline)

I Checks all the steps of the data analysis (quality, alignment,
quantification, normalization, differential analysis . . . )

And after ?

I Interpretation

I Functional analysis

I Gene network
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