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Obijectifs

» Connaitre le vocabulaire et les concepts statistiques utiles pour analyser
des données type RNA-Seq

» Savoir enchainer de fagon pertinente un ensemble d’outils
bioinformatiques et biostatistiques dans I'environnement Galaxy

» Comprendre le matériel et méthode d’un article du domaine

» Evaluer la pertinence d'une analyse RNA-seq en identifiant les éléments
clefs et comprendre les particularités liées a la nature des données

BY NC



Programme : alternance Cours / TP

Se familiariser a I'environnement Galaxy

Construire un plan d’expérience simple

>

>

» Explorer les données

> Identifier les transcrits différentiellement exprimés
>

Se sensibiliser aux tests multiples

BY NC



TP Galaxy

SARTools package

Migale Galaxy instance : https://galaxy.migale.inra.fr
RNA-seq tools

Reference
( )

Hugo Varet, Loraine Brillet-Guéguen, Jean-Yves Coppée and Marie-Agnes
Dillies (2016): “SARTools: A DESeg2- and EdgeR-Based R Pipeline for
Comprehensive Differential Analysis of RNA-Seq Data.” PLoS One, doi:
http://dx.doi.org/10.1371/journal.pone.0157022

Details about this tool
https://github.com/PF2-pasteur-fr/SARTools
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To share a common vocabulary

between Biology, Bioinformatics and Statistics.

RNA-SEQ
5 N ORMALISATIONE

BIOIN FORMATICS:
STATISTICS

BARTRANSCRIPTOME
REPLICATES

MULTIPLEXING
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Transcriptomics

Transcriptome: Complete set of transcripts and their level of expression, for a
defined population of cells. Unlike the genome, the
transcriptome is dynamic and can be modulated by both
internal and external factors. (velculescu et al, 1997)

The aims of transcriptomics:

» to quantify the changing expression levels of each transcript under
different biological conditions (differential analysis);

» to catalogue all species of transcript, including mRNAs, non-coding RNAs
and small RNAs;

> to determine the transcriptional structure of genes: splicing patterns,
post-transcriptional modifications;

» to discover allele-specific expression.

Estimate of RNA levels in a typical mammalian cell (Palazzo et al., 2015).

IncRNA

RNA by mass RNA by number of molecules

BY NC
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Which high-throughput sequencing technology to choose?

lllustrate the dynamic and changing nature of sequencing based on the number of reads and read length.
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A generic roadmap for RNA-seq data analyses
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RNA-seq data analysis workflow for differential gene
expression
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Differential analysis

Identification of differentially expressed (DE) genes

A gene is declared differentially expressed (DE) between two conditions if
the observed difference is statistically significant, i.e. greater than a natural
random variation.

» Need of statistical tools to make a decision.

BY NC
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Statistical Test

A test allows to choose given the observations between two hypotheses Hy

and H;.

Judgement of H,

Null hypothesis Hj is

True False
g
Fail to reject OK type Il error
(False Negative)
«
Reject type | error OK

(False Positive)

Remark: a null hypothesis is a statement that one seeks to nullify with
evidence to the contrary.

Example

Ho= {The mean gene expression is the same in the two conditions }
Hi = {The mean gene expression is different in the two conditions }

INRAZ
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Test statistique

Risque de premiére espece est la probabilité de rejeter Hy alors qu’elle est
vraie.

Niveau ou seuil noté « est la valeur la plus élevée du risque de premiére
espece.

Risque de deuxiéme espéce noté [ est la probabilité de ne pas rejeter Hy
alors qu’elle est fausse.

Puissance du test notée 1 - 5 est la probabilité de rejeter Hy alors qu’elle est
fausse.

p-valeur est le seuil limite auquel H, est rejetée compte tenu des

observations (nombre compris entre 0 et 1). C'est la

probabilité d’obtenir une statistique de test plus grande que la
statistique observée (calculée) sous I'hypothese nulle.

I N RM Analysis of RNA-Seq data with Galaxy 15/103
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Statistical issues of gene expression analysis from RNA-Seq
experiment

» A large number of genes and few replicates

» Discrete, positive and skewed data

» Large dynamic range with presence of 0 counts

» The total number of sequences is not the same for all the samples



A typical raw dataset

S S ... S e Sn

Gene 1 16 9 ... i 15
Gene 2 4448 3973 ... Y e 3964
Gene i Vit Yio ... Yoi - Yin
Gene G 59 164 ... Ya 143
Seq. depth 6865057 11127087 ... n = 25:1 Yo ... 11320226

Yg = number of sequences from sample j assigned to gene g.

Remark: one row = one region of interest (gene, exon, transcript, - - - ).

BY NC



Example Data from Lobel et Herskovits (2016)

» Study of CodY'’s regulatory repertoire in Listeria monocytogenes;

» 2 conditions (Wild Type and codY mutant) x 2 growth conditions (rich and
minimal)

» 11 raw files, one per sequenced sample.
» each file contains the raw counts after bioinformatic steps.

BY NC



SARTools in Galaxy environment

Provide Design/target file (tabular format) with one row per sample and is
composed of at least three columns with headers:

» column 1 : unique names of the samples (short but informative as they
will be displayed on all the figures)

» column 2 : name of the count files;
» column 3 : biological conditions;

> optional columns : further information about the samples (day of library
preparation for example).

Provide Zip file containing raw counts files:
» the unique IDs of the features in the first column;

» the raw counts associated with these features in the second column (null
or positive integers).

BY NC
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INRAZ

Your turn | TP - Preprocess files for SARTools

Generate design/target file and archive for SARTools inputs.

= Galaxy Migale

Tools 14

seareh toals Q

Mapping
RNAseq

Preprocess files for SARTools:
generate design/target file and
archive for SARTools inputs

SARTools DESeq2 Compare two or
more biological conditions in a RNA-
Seq framework with DESeq2

SARTools edgeR Compare two or
more biological conditions in a RNA-
Seq framework with edgeR

Cuffcompare compare assembled
transeripts to a reference annotation
and track Cufflinks transcripts across
multiple experiments

Cufflinks transcript assembly and
FPKM (RPKM) estimates for RNA-Seq
data

htseq-count - Count aligned reads in
a/BAM file that overlap features ina
GFF file

Variant calling

Variant analyses
Migale Tools

SEQUENGE ANALYSIS TOOLS
GENOME ANALYSIS TOOLS
Genome annotation
METAGENOMICS TOOLS

Rt aharmnding

le données  Workfl ualize = p ~ Aider Ut

Preprocess files for SARTools generate design/target file and
archive for SARTools inputs (Galaxy Version 0.1.1)

1y Favorite || &Versions |~ Options
Adda blocking factor
Yes  No
Adjustment varisble to use as a batch effect (default no).
Group
1: Group
Group name
group?
Raw counts
1: Raw counts
Replicate raw count
B © | O Notxtdataset available. - e
Replicate label name
replicatel
‘You need to specify an unique label name for your replicates
2: Raw counts
Replicate raw count
B @ O Noixidataset available - B2
Replicate label name
replicatel
You need to specify an unique label name for your replicates.

+ Insert Raw counts

2 Group

Analysis of RNA-Seq data with Galaxy
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Your turn | TP - Preprocess files for SARTools

With data from Lobel et Herskovits (2016)

Galaxy Migale

Tools kd

searhtools o

RNAseq

Preprocess fles for SARTools
generate design/target il and
archive for SARTools inputs

SARTools DESeq2 Compare two or
more biological conditons na RNA-
Seq famework with DESeq2.

SARTools edgeR Compare two or
more biological conditions n RNA-
Seq famework with edgef

Cuttcompare compare assembled
transcripts toa eference annotation
and track Cuffinks transcripts across
multple experiments

Cutfinks transcript assembly and
FPKM (RPKM) estimates for RNASeq
deta
htseq-count - Count aigned reads in
aBAM file that overlap features na
GFF fie

Variant calling

Variant analyses

Migale Tools

SEQUENCE ANALYSIS TOOLS

‘GENOME ANALYSIS TOOLS

Genome annotation

METAGENOMICS TOOLS

Metabarcoding

METAPROTEOMICS T0OLS

send Data

Lift-Over

Fetch Alignments/Sequences

Operate on Genomic Intervals

Graph/Display Data
<

INRAZ

Preprocess files for SARTools generate design/target ik and archive for SARTools

inputs (Gelaxy Version 0.1.1)

‘Add ablocking factor

Yes | No

‘Adjustment variable 1o use as a batch effect (default o).

Group
1:Growp
Group name
BT
Raw counts
1:Raw counts
Replicate row count
Bl o o sosworsisn
Replicateabel name

BHNT

You need to specify an unique label name foryour eplicates.

2 Raw counts
Replicate raw count

B @ O | sosMsTsessnt
Replicate label name

BHINT2

Vou need to speciy an unique label name foryour eplicates.

3:Raw counts
Replicate raw count

B ©| o | cosmerssernt
Replicate label name

BHINTS

You need to specify an unique label name foryour eplicates.

+Insert Raw conts

2.Growp

rFavorite | & Versions || ~ Options.

Analysis of RNA-Seq data with Galaxy
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Your turn ! TP - Design/target file

Design Lobel et Herskovits (2016)

label
BHIWT1
BHIWTZ2
BHIWT3
BHicodY1
BHicodY2
BHicodY3
LBEMMWT1
LEMMWTZ
LBEMMWT3
LBMMcodY1
LBMMcodY2

INRAZ

files

dataset_286945.dat
dataset_286946.dat
dataset_286947.dat
dataset_286948.dat
dataset_286949.dat
dataset_286950.dat
dataset_286969.dat
dataset_286970.dat
dataset_286971.dat
dataset_286973.dat
dataset_286974.dat

group
BHIWT
BHIWT
BHIWT
BHicodY
BHlcodY
BHicodY
LBMMWT
LEMMWT
LBMMWT
LBMMcodY
LBMMcodY

Analysis of RNA-Seq data with Galaxy
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Example Data from Lobel et Herskovits (2016)

The input dataset is a matrix y = [y;] or data frame (gene x sample) of
counts.

» Each row i = one experimental unit (feature or gene)

» Each column j = one variable (experimental sample)

Statistical modelling : y; = f(X) + €

> where y; denotes the (n x 1) vector of expression intensities of the
feature i,

> X denotes the (n x p) design matrix,
> and eis a (n x 1) stochastic random error vector

BY NC
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Experimental Design

A good design is a list of experiments to conduct in order to answer to the
asked question which maximize collected information and minimize
experiments cost with respect to constraints.

» Rule 1: Well define the biological question, get together and collect a
priori knowledge (e.g. reference genome, splicing .. .),

» Rule 2: Anticipate, Identify all factors of variation and adapt Fisher's
principles (1935), collect metadata from experiment and sequencing,

» Rule 3: Choose a priori tools/methods for bioinformatics and statistical
analyses,

» Rule 4: Draw conclusions on results.

And do not forget: budget also includes cost of biological data acquisition,
sequencing data backup, bioinformatics and statistical analysis.
http://£1000.com/posters/browse/summary/1096840

BY NC
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Rule 1: Well define the biological question

Problems can be ranked in terms of ease and interest Choice of proble“r;-es;g:;egst:'e;?;ﬁtios:mm moves with
Long term plan
for lab
® O ®
Large gain % Large gain
in knowledge ® in knowledge
®
® © OO
Small gain ®» ® Small gain
in knowledge . PO in knowledge
0
Hard Easy Hard Easy

Choosing scientific problems on feasibility and interest [Alon 2009]

Make a choice
» Identify differentially expressed genes (between which conditions),
» Detect and estimate isoforms,
» Construct a de novo transcriptome.

BY NC
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Define the biological question

» Qf1: To identify differentially expressed genes between WT and codY
mutant in minimal growth conditions

> Q2: To identify differentially expressed genes between WT and codY
mutant in rich growth conditions

BY NC



Rule 2: Factors of variation - Metadata (1)
Basic principles - Fisher (1935)

» Technical or/and biological replications

A > Biological replicate:

Repetition of the same experimental protocol
but independent data acquisition (several
samples).

Technical replicate:

Same biological material but independent
Rephemes

replications of the technical steps (several
extracts from the same sample).

» Randomization
Process of random assignment of individuals to group, block. Reduces bias
caused by factors that have not been accounted for in the experimental design
» Blocking
Isolating variation attributable to a nuisance variable (e.g. lane). Experimental

units are grouped into homogeneous block. Random allocation within each block.

BY NC
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Rule 2: Factors of variation - Metadata (2)

aiity
ntity and U
Qo RNA extr

tion:

RNA library prepard

iform cove!
non-unif :
rray)

f raw re: 3
<upport (flowcell, lane:

sequencing: e

—_—
—_—
—

MRNA Is reverse
transcribed

C<DNA s ligated
to ada)

—
total RNA
or mRNA

fragmented
mMRNA

Into cDNA

ptator

(Source PEPI IBIS)

“Sequencing technology does not
eliminate biological variability.”
(Nature Biotechnology Correspondence, 2011)

Anticipate

P Identify factors of variation:
controllable bias and technical
specificity,

» Collect metadata from experiment
and sequencing.

‘ lane effect < run effect < library prep effect << biological effect

INRAZ

(Marioni, 2008), (Bullard, 2010)
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Rule 3: Choose bioinformatics and statistics models (1)

» Related to technical choices
Choice of sequencing technology, type of reads (paired-end ?), type of sequencing
(directional ?), library preparation protocol

» Related to biological question

» How many reads, which sequencing depth? which number of biological
replicates ?
Why increasing the number of biological replicates?

» To generalize to the population level

» To estimate with a higher degree of accuracy variation in individual
transcript (Hart, 2013)

» To improve detection of DE transcripts and control of false positive rate:
TRUE with at least 3 (Sonenson 2013, Robles 2012)

» To focus on detection of low mRNAs, inconsistent detection of exons at
low levels (<5 reads) of coverage (Mclintyre, 2011)

BY NC
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Rule 3: Choose bioinformatics and statistics models (2)

More biological replicates or increasing sequencing depth?
It depends! (Haas, 2012), (Liu, 2014)

» DE transcript detection: (+) biological replicates

» Construction and annotation of transcriptome: (+) depth and (+) sampling
conditions

» Transcriptomic variants search: (+) biological replicates and (+) depth

Support
» An experimental design using multiplexing,

» Tools for experimental design decisions: Scotty (Busby, 2013),
RNAsegPower (Hart, 2013), PROPER (H. Wu, 2014), RNAseqgPS (Guo,
2014)

Multiplexing:
Tag or bar coded with specific sequences added during library construction and that
allow multiple samples to be included in the same sequencing reaction (lane).

BY NC



Experimental Design: Conclusion

A good design is a list of experiments to conduct in order to answer to the
asked question which maximize collected information and minimize
experiments cost with respect to constraints.

» Well define the biological question, get together and collect a priori
knowledge (e.g. reference genome, splicing .. .),

» Anticipate, Identify all factors of variation and adapt Fisher’s principles
(1935), collect metadata from experiment and sequencing,

» Include independent biological replicates to ensure reproducibility and
accuracy of results

BY NC
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SARTools DESeq2

Compare two or more biological conditions in a RNA-Seq framework with
DESeq2.

Reference

("DESeq2")
Michael | Love, Wolfgang Huber and Simon Anders (2014): Moderated
estimation of fold change and dispersion for RNA-Seq data with DESeq2.
Genome Biology

I N RM Analysis of RNA-Seq data with Galaxy 321103
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SARTools edgeR

Compare two or more biological conditions in a RNA-Seq framework with
edgeR.

Reference

( )
Robinson MD, McCarthy DJ, Smyth GK (2010). “edgeR: a Bioconductor

package for differential expression analysis of digital gene expression data.”
Bioinformatics, 26(1), 139-140.

McCarthy, J. D, Chen, Yunshun, Smyth, K. G (2012). “Differential expression
analysis of multifactor RNA-Seq experiments with respect to biological
variation.” Nucleic Acids Research, 40(10), 4288-4297.
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Your turn | TP - SARTools on Galaxy - DESeq2

SARTools DESeq2 Compare two or more biological conditions in a RNA-Seq framework with DESeq2

¥ Favorite || & Versions | Options
(Galaxy Version 1.7.3+galaxy0)

Name of the project used for the report
Project
N space allowed. (-projectName)
Name of the report author
Galaxy
No space allowed. (-author)
Design / target file
D © ©  Noixtdatasetavailable. - B
See the help section below for details on the required format (~targetFile)
Zip file containing raw counts files
[u] D | Nono_unzip.zip or zip dataset available. . B>

See the help section below for details on the required format. (~rawDir)
Names of the features to be removed

alignment_not_unique,ambiguous,no._feature not_aligned too_low_aQual

Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are
‘alignment_not_unique,ambiguousno_feature,not_aligned too_low_sQual'. (~featuresToRemove)
Factor of interest
oroup
Biolagical condition in the target file. Default is 'group’ (~varlnt)
Reference biological condition
WT
Reference bislogical condition used to compute fold-changes, must be one of the levels of 'Factor of interest’ (~condRef)

Advanced Porameters ®”

Email notification
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Your turn | TP - SARTools on Galaxy - Fill it for DESeqg2

‘SARTools DESeq2 Compare two or mere biolegical conditions in a RNA-Seq framework with DESeq2
(Galaxy Version 1.7 3+galaxyo)

{rFavorite | &Versions | v Options
Name of the project used for the report
Formation_Lobel_DESeq2
No space allowed. (~projectName)
Name of the report author
cHA
No space allowed. (-author)
Design / target file
B @ 3 17 desion file for SARTools (on data 16, data 15, and others) L=t
See the help section below for details on the required format. (~targetFile)
Zip file containing raw counts files

B ©  © || 15 counts files for SARTeols (en data 16, data 15, and others) -2

See the help section below for details on the required format. (~rawDir)
Names of the features to be removed

alignment_not_unique,ambiguous,no_feature,not_aligned too_low_aQual

Separate the fealures with a comma, no space allowed. More than once can be specified. Specific HTSeq-count infermation and rRNA for example. Defauit are
‘alignment_not_unique,ambiguous,no_featurenot_aligned,toe_low_aQual’. (~featuresToRemove)
Factor of interest

group
Biological condition in the target file. Default is ‘group’. (~varint)
Reference biological condition

BHIWT
Reference biological condition used to compute fold-changes, must be one of the levels of Factor of interest’ (~condRef)

Advanced Parameters =
Email notification

Yes Mo

Send an email natification when the job completes.
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Your turn ! TP - SARTools on Galaxy - DESeg2 parameters

Parameters

projectName: name of the project;

author: author of the analysis;

featuresToRemove: character vector containing the IDs of the features to remove before running the analysis (default are "alignment not unigue”,
"ambiguous’, 'no feature”, *not aligned”, "too low aQual® to remove HTSeq-count specific rows);

varint: variable of interest, i.e. biological condition, in the target file ("group” by default);

condRef: reference biological condition used to compute fold-changes (no default, must be one of the levels of varint);

bateh: adjustment variable to use as a batch effect, must be a column of the target file (NULL if no batch effect needs to be taken into account);
alpha: significance threshold applied to the adjusted p-values to select the differentially expressed features (default is 0.05);

fitType: type of model for the mean-dispersion relationship ("parametric’ by default, or "local’);

cooksCutoff: TRUE (default) of FALSE to execute or not the detection of the outliers [4];

independentFiltering: TRUE (defaulf) of FALSE to execute or not the independent filtering [5];

pAdjustMethod: p-value adjustment methed for multiple testing [6, 7] ("BH" by default, "BY" or any value of p.adjust. metheds);

typeTrans: method of transformation of the counts for the clustering and the PCA (default is "VST" for Variance Stabilizing Transformation, or "rlog” for
Regularized Log Transformation];

lecfune: function used for the estimation of the size factors (default is "median”, or "shorth’ from the genefilter package);

colors: colors used for the figures (one per biological condition), 8 are given by default.

forceCairoGraph: TRUE or FALSE (default) to force the use of cairo with options(bitmapType="cairo’).

S
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Your turn ! TP - SARTools on Galaxy - DESeqg2 output files

Output files
Report:
Give details about the methodology, the different steps and the results. It displays all the figures produced and the most important results of the differential

analysis as the number of up- and down-regulated features.
The user should read the full HTML report and closely analyze each figure to check that the analysis ran smoothly.

Tables:

« TestVsRet.complete.txt: contains all the features studied;
« TestVsRet.down.txt: contains only significant down-regulated features, i e less expressed in Test than in Ref;
« TestVsRet.up.txt: contsins only significant up-regulated festures i.e. more expressed in Test than in Ref.

Figures:

MAplot.png: MA-plot for each comparison (1o ratio of the means vs intensity).
PCA.png: first and second factorial planes of the PCA on the samples based on VST of rlog data;
barplotNull.png: percentage of null counts per sample;
barplotTC.png: total number of reads per sample;
« cluster.png: hierachical clustering of the samples (based on VST of rlog data);
. : BoXplots on raw counts
densplot.png: estimation of the density of the counts for each sample;
diagSizeFactorsHist.png: diagnostic of the estimation of the size factors:
diagSizeFactorsTC.png: plot of the size factors vs the total number of reads:

per .png: graph of of P and diagnostic of lagHinearity of the dispersions;
majSeq.png: percentage of reads caught by the feature having the highest count in each sampk
. pairwise scatter each pair of samples and SERE values;
= rawpHist.png: histogram of the raw p-values for each comparison;
« volcanaPlot.png: vulcano plot for each comparison (- og10 (adjusted P value) vs log ratio of the means).

Rlog file:
Give the R console outputs
Robjects ( RData file):

Give all the R objects created during the analysis is saved: it may be used to perform downstream analyses.

Analysis of RNA-Seq data with Galaxy 37/103
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Principal Component Analysis (PCA)

Aim
To reduce multidimensional datasets to lower dimensions analysis

How ?
Transformation of a set of observations of possible correlated variables (genes)
into a set of values of linearly uncorrelated variables (principal components)
> Property: the first principal component has the largest possible variance.
» PCA is sensitive to the scaling of the data.

The authors recommend to use the transformation.
In DESeq2, the PCA is performed on the top genes selected by highest row
variance (ntop argument) of the function

I N RM Analysis of RNA-Seq data with Galaxy 38103
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Your turn | TP - SARTools on Galaxy - DESeqg2 - PCA

Visualize PCA from Lobel et Herskovits (2016)



Your turn ! TP - SARTools on Galaxy - edgeR

SARTools edgeR Compare two or more biological conditions in a RNA-Seq framework with edgeR

Y Favorite | & Versions | Options
(Galaxy Version 1.7 3+galaxyd)

Name of the project used for the report
Project
No space allowed. (-projectName)
Name of the report author
Galaxy
No space allowed. (-author)
Design / target file
B @ 0 Nottdstasetavailable. - e
See the help section below for details on the required format. (~targetFile)
Zip file containing raw counts files

i)

© | Nono_unaip zip or zip dataset available. - e

Ses the help section below for details on the required format. {~rawDir)
Names of the features to be removed

alignment_not_unique,ambiguous,no_featurenot_aligned.too_tow_agual

Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are
‘alignment_not_unique,ambiguous no_featurenot_aligned;to_low_aQuar’ (~featuresToRemove)
Factor of interest
group
Biological condition in the target file. Default is 'group’. (~varint)
Reference biological condition
wr
Reference biological condition used to compute fold-changes, must be one of the levels of Factor of interest. (~condRef)

Advanced Parameters ®

Email notification
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Your turn | TP - SARTools on Galaxy - Fill it for edgeR

SARTools edgeR Compare twa or more biological conditions in a RNA-Seq framework with edgeR

¥r Favorite || & Versions | Options
(Galaxy Version 1.7.3+galaxy0)

Name of the project used for the report
Formation_Loble_edgeR
No space allowed. (-projectName)
Name of the report author
cHA
N space allowed. (-author)
Design / target file
B @ © |17 designfile for SARTools {on data 16, data 15, and others) -
See the help section below for details on the required format. (-targetFile)
Zip file containing raw counts files
[u] £ || 18: counts files for SARTools (on data 16, data 15, and others) DN -
See the help section below for details on the required format. (—rawDir)
Names of the features to be removed
alignment_not_unique,ambiguous,no_feature not_alignedtoo_low_aCual

Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are
‘alignment_not_unique,ambigucusno_featurenot_aligned too_low_sQual' (~featuresToRemove)

Factor of interest
group

Biolagical condition in the target file. Default s 'group’ (~varlnt)

Reference biological condition
BHIWT

Reference biological condition used to compute fold-changes, must be one of the levels of 'Factor of interest’ (~condRef)

Advanced Parameters w

Email notification
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Your turn ! TP - SARTools on Galaxy - edgeR parameters

Parameters

projectName: name of the project;

author: author of the analysis;

featuresToRemove: character vector containing the IDs of the features to remove before running the analysis (default are "alignment not unigue”,
"ambiguous’, 'no feature”, *not aligned”, "too low aQual® to remove HTSeq-count specific rows);

varint: variable of interest, i.e. biological condition, in the target file ("group” by default);

condRef: reference biological condition used to compute fold-changes (no default, must be one of the levels of varint);

bateh: adjustment variable to use as a batch effect, must be a column of the target file (NULL if no batch effect needs to be taken into account);
alpha: significance threshold applied to the adjusted p-values to select the differentially expressed features (default is 0.05);

pAdjustMethed: p-value adjustment methed for multiple testing [4, 5] ("BH" by default, "BY" or any value of p.adjust. metheds);

epmCutoff: counts-per-million cut-off to filter low counts (default is 1, set to 0 to disable filtering);

gene.selection: method of selection of the features for the MuHtiDimensional Scaling plot {"pairwise” by default or comman);
normalizationMethod: normalization method in caleNormFactors(): "TMM" (default), "RLE" (DESeq method) or "upperquartile”;

colors: colors used for the figures (one per biological condition), 8 are given by default.

forceCairoGraph: TRUE or FALSE (default) to force the use of cairo with options(bitmapType="cairo’).

S
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Your turn ! TP - SARTools on Galaxy - edgeR output files

Output files
Report:

Give details about the methodolagy, the different steps and the results. It displays all the figures produced and the most important results of the differential
analysis as the number of up- and down-regulated features.
The user should read the full HTML report and clasely analyze each figure to check that the analysis ran smoathly.

Tables:
« TestVsRef.complete.txt: contains all the features studied;

« TestVsRef.down.txt: contains only significant dowr-regulated features, i e. less expressed in Test than in Ref;
« TestVsRef.up.txt: contsins only significant up-requlated features i e. more expressed in Test than in Ref.

Figures:

* MAplot.png: MA-plot for each comparison (log ratio of the means vs intensity).

PCA.png: first and second factorial planes of the PGA on the samples based on VST of riog data;
barplotNull.png: percentage of null counts per sample;

barplotTC.png: total number of reads per sampi
+ clusterpng: hierachical clustering of the samples (based on VST or riog data):
. : boxplots on raw counts;

+ densplot.png: estimation of the density of the counts for each sample:

+ diagSizeFactorsHist.png: diagnostic of the estimation of the size factors;

+ diagSizeFactorsTC.png: plot of the size factors vs the total number of reads;

* disper png: graph of of e and diagnostic of log-inearity of the dispersions;
+ majSeq.png: percentage of reads caught by the feature having the highest count in each sample;
. pairwise scatter each pair of samples and SERE values;

« rawpHIst.png: histogram of the raw p-values for each comparison:
+ volcanoPlot.png: vulcana plot for each comparison (- log10 (adjusted P value) vs log ratio of the means).

R log file:
Give the R cansole outputs.

R objects (.RData file):

Give all the R objects created during the analysis is saved: it may be used e perform downstream analyses.
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MDSPIot

MDSPIot Multidimensional scaling plot

A means of visualizing the level of similarity of individual cases of a dataset.
The distances between points on the plot reflects the level of similarity between
them. The argument gene.selection of the plotMDS edgeR function
corresponds to top genes chosen for the calculation of the MDS.

» common : top genes with the largest root-mean-square deviations
between samples

> pairwise (default value) : a different set of top genes is selected for each
pair of samples

Transform count data as moderated log-counts-per-million before performing
MDSPIot.

Counts-per-million

Number of reads mapped to gene x 10°
Total number of mapped reads

I N RA@ Analysis of RNA-Seq data with Galaxy 441103
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Your turn ! TP - SARTools on Galaxy - edgeR - MDSplot

Visualize MDSplot from Lobel et Herskovits (2016)



Introduction to statistical analysis of expression data with R

Differential analysis
Normalization
Differential analysis



Random
fragmentation

Reverse
transcription

PCR
amplification &
sequencing

mRNAs from a sample Fragmented mRNAs cDNAs

mapping

counting

Avector of counts mapped reads Alist of reads

Adapted from Li et al. (2011)

Q0O
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A typical raw dataset

Si S .. S; N Sh

Gene 1 16 9 ... i 15
Gene 2 4448 3973 ... Y e 3964
Genei Vit Vie e Yij e Yin
Gene G 59 164 ... Ya e 143
Seq. depth 6865057 11127087 ... N;= Zf; yi ... 11320226

yi = number of sequences from sample j assigned to gene .

Remark: one row = one region of interest (gene, exon, transcript, - - - ).

I N RM Analysis of RNA-Seq data with Galaxy 48103
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Statistical issues of gene expression analysis from RNA-Seq
experiment

» A large number of genes and few replicates

v

Non-negative integers with asymmetric distribution

» From 0 up to millions with different variance within different parts of the
dynamic range (heteroskedasticity)

» Systematic sampling biases, e.g. the total number of sequences (=
library size) is not the same for all the samples

I N RM Analysis of RNA-Seq data with Galaxy 49103
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Normalization or how to make measurements comparable ?

Definition
Normalization is a process designed to identify and correct technical biases

removing the least possible biological signal. This step is technology and
platform-dependant.

Technical biases

Some biases may be controlled by an adapted experimental design or a good
experimental protocol.

Normalization aims to correct systematic uncontrollable biases such as those
induced by sequencing process.

Within and between normalization

Within-sample normalization enabling comparisons of fragments (genes) from
a same sample.

Between-sample normalization enabling comparisons of fragments (genes)
from different samples.

BY NC



Sources of variability

Read counts are proportional to expression level, gene length and sequencing
depth (same RNAs in equal proportion).

Within-sample

» Gene length

» Sequence composition (GC content)
Between-sample

» Depth (total number of sequenced and mapped reads)
» RNA-composition or presence of majority fragments

» Sequence composition du to PCR-amplification step in library preparation
(Pickrell et al. 2010, Risso et al. 2011)

I N RM Analysis of RNA-Seq data with Galaxy 511103
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Normalization and differential expression (DE) analysis

DE analysis concerned with relative changes in expression levels between
conditions rather than estimating absolute expression levels.

Normalization: identify and correct technical effects related to the experimental
conditions (sample-specific effects) without altering the biological signal.

Sequencing depth
q g dep RNA composition

corge] ‘ B Gene1 | Gene2 [ Gene3 ‘

(a) Proportional shares of mRNA

wl B

cond. A cond. B

mRNA/cell

4e+06-

libsize

3
LR ond. B

2e+06-

codYl codv2 codv3 WT1 WT2 WT3
sample

Q)
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Typology of normalization methods

according to the underlying assumptions (Evans et al. 2017).

Normalization by library size

Same total expression, same amount of mRNA/cell for each experimental
condition.

Normalization by distribution or testing

» DE and non-DE genes have the same behaviour.

» Balanced expression (up/down).

Normalization by controls

» Existence of control (invariant set of genes).
» Control genes behave like non-control genes (same technical effects).

BY NC
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Understanding sequencing data

Relative library size
Ygi- raw read counts of gene g in sample j
n = 25:1 Ygi- relative library size of sample j after sequencing

Warning: n; have only a technical, not a biological meaning.

Absolute counts and effective library size

ay;: unknown absolute counts (average number of mMRNAs from a given gene
in the cells before seq.) We observed counts prop. to ag and Lg, the length of
the gene g.

Effective library size: 25:1 ag.
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Normalization by library size: effective Library Size concept

Motivation

Different biological conditions express different RNA repertoires, leading to
different total amounts of RNA

Assumption

A majority of transcripts is not differentially expressed
Aim

Minimizing effect of (very) majority sequences

» Trimmed Mean of M-values, Robinson and Oshlack 2010 (edgeR)
» Relative Log-Expression, Anders and Huber 2010 (DESeq2)

BY NC



Normalization by library size: Trimmed Mean of M-values
(TMM)
Idea: we may not estimate the total ARN production in one condition but we

may estimate a global expression change between two conditions from non
extreme M; distribution.

A R Filter on:
' » transcripts with nul counts,

» the 30% more extreme

ro__ Yi/N;
M} = logz yi,/N,) values,

» the 5% more extreme
. A = 0.5 x [loga(3) + loga ()]
v{ | values.
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Normalization by library size: Trimmed Mean of M-values

1. Select the reference sample r
2. Define a set of genes G* for which neither the M;; or the Aj; value was

trimmed
3. Calculate the scaling factors TMI\/II-(') such as
r r
loge(TMM() — 2zicer Wit
! Dice Wi

Ni—yi _ N—yir
N,yii N:yir
4. Rescale the factors to avoid dependance on a specific reference sample

with wj =

™M
exp(3_, TMM;" /n)

S =

BY NC
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Normalization by library size: Relative Log-Expression
method (RLE, DESeq)

1. Compute a pseudo-reference sample: geometric mean across samples
(less sensitive to extreme value than standard mean)

vi = (")

with y; number of reads in sample j assigned to gene i, n number of samples in
the experiment.
2. Calculate scaling factors

5= mediany—'ﬁ
i:yi;#O yij

BY NC
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Normalization by library size: Some remarks about TMM and

RLE normalization

Interpretation of the scaling factors

» The normalization factors of all the libraries multiply to 1.

> 5 < 1: a small number of high count genes are monopolizing the
sequencing. = Need of downscaling.

WT1 WT2 WT3 codY.1 codY.2 codY.3
RLE 1.05 1.05 0.87 1.06 1.06 0.93
™M 1.02 1.00 0.97 1.01 1.05 0.95

Model-based normalization, not transformation

In edgeR and DESeq2, normalization factors = correction factors that enter
into the model.

BY NC
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Normalization: key points (1/2)
Dillies et al. 2013, Evans et al. 2017

» A normalization is needed and has a great impact on the DE genes,

> RNA-seq data are affected by technical biaises (total number of mapped
reads per lane, gene length, composition bias...),

» Do not normalize by gene length in a context of differential analysis,

» Performant and robust methods in a DE analysis context on the gene
scale:

» Trimmed Mean of M-values, (Robinson and Oshlack 2010, edgeR)
> Relative Log-Expression, (Anders and Huber 2010, DESeq2)
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Normalization: key points (2/2)
Dillies et al. 2013, Evans et al. 2017

» The correct normalization method to use depends on which assumptions
are valid for the biological experiment:
> same / different amount of mMRNA / cell
> majority of genes is invariant between conditions, low number of DE genes
> symmetry of differential expression
> absence of high count genes, similar library size
» Incorrect normalization leads to problem in downstream analysis, such as
inflated FP.

> There are examples of global shifts in expression that violate assumptions
of conventional normalization methods, requiring controls.

I N RM Analysis of RNA-Seq data with Galaxy 61103
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Your turn ! TP - Exploration and normalisation

» Estimation of size factors

» Data normalisation

> Boxplot of raw and normalized data
» MA-plot of raw and normalized data



Differential Analysis

Identification of differentially expressed genes (DE)

A gene is declared differentially expressed (DE) between two conditions if the
observed difference is statisticially significant, ie more than only du to natural
random variation.

> Statistical tools are necessary to take this decision.

» The main steps are : experimental design, normalisation and differential
analysis, multiple testing.

BY NC
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Fold Change approach and ideal cut-off values

Cut-off values for gene expression fold change when
performing RNA seq
I would like to know what the general consensus is regarding cut-off values for

gene expression fold changes (is it mainly >2 up and down-regulated?). Also, is
this cut-off applied together with the cut-off for p-value which is p<0.05?

| think the general consensus is » and ¢ than 2-fold, however, we should
all justify our rationale for using 2-fold. In our specific case, a difference

Fur most gerne expression Lrdrnge, peEuULE diwdys UsSE TULU Lndiiyge £ d5 d
cutoff for microarray or gPCR. As for RNAseq, since the method is much
more sensitive, I guess it must lose some specificity, so I think it may
need a higher cuteff number than 2.
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Fold Change approach and ideal cut-off values

Gene CondA1 CondA2 CondB1 CondB2 FC pvalue

1 Genei 5.00 7.00 2.00 2.00 3.00 0.06
2 Gene2 800.00 1000.00 350.00 250.00 3.00 0.03
3 Gene3d 700.00 1100.00 350.00 250.00 3.00 0.10
4 Gene4d 500.00 1300.00 550.00 50.00 3.00 0.33

FC does not take the variance of the samples into account.
Problematic since variability in gene expression is partially gene-specific.

BY NC
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Differential analysis

Aim : To detect differentially expressed genes between two conditions
» Discrete quantitative data
» Few replicates
» Overdispersion problem

Challenge: method which takes into account overdispersion and few number of
replicates
» Proposed methods : edgeR, DESeq(2) for the most used and known
Anders et al. 2013, Nature Protocols
» An abundant litterature

» Comparison of methods : Pachter et al. (2011), Kvam and Liu (2012),
Soneson and Delorenzi (2013), Rapaport et al. (2013)
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Hypothesis testing

Definition
A general method for testing a claim or hypothesis about a parameter in a
population, using data measured in a sample.

Four ingredients

1. Experimental X1, X2, ...y Xn

2. : assumptions about the independence or distributions of
the observations with parameter 6

to test : assumption about one parameter of the distribution
. (or critical region): the set of values of the test statistic

T for which the null hypothesis Hy is rejected. T = f(Xi, Xz, ..., X,) is a
function which summarizes the data without any loss of information about
0. The distribution of T under Hy is known.

BY NC
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Critical region and p-value

p-value p(t)

For a realisation t of the T test statistic p(t) is the probability (calculating under
Ho) of obtaining a test statistic at least as extreme as the one that was actually
observed.

In bilateral case :
p(t) = Pr{|T| = [t}

The p-value measures the agreement between H, and obtained result.

Link with the critical region

Pu{T € R} = P{p(t) < o}

with « the significance level.
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Differential analysis gene-by-gene- with replicates

For each gene i

Is there a significant difference in expression between condition A and B?

> Statistical model (definition and parameter estimation) - Generalized
linear framework Yj; follows f(6;)

» Hypothesis to test : Hy; Equality of relative abundance of gene i in
condition A and B vs H;; non-equality

> Critical region - Wald Test or Likelihood Ratio Test

The Poisson Model
Let be Yj the read count for gene i in sample j

> Y follows a Poisson distribution (u; = s; * qj), with s; library size and
log gj = >, X Bir, X = [x;] is the design matrix and /3 is the vector of
coefficients.

> Property : V(Yj) = E(Yj) = p;

BY NC
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Mean-Variance Relationship

Technical replicates Biological replicates

10405
te

Tes

1e405.

16802

Variance
o

10400

et

mean=variance

1002
1e-04
L

(Poisson assumption)

T T T
1 10 100 1000 10000 1 100 10000

Mean Mean
data from Marioni et al. Gen Res 2008 data from Parikh et al. Genome Bio 2010

From D. Robinson and D. McCarthy
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Overdispersion in RNA-seq data

Counts from biological replicates tend to have variance exceeding the mean (=
overdispersion relative to the Poisson distribution). Poisson describes only
technical variation.

What causes this overdispersion?
» Correlated gene counts

Clustering of subjects

>

» Within-group heterogeneity

» Within-group variation in transcription levels
| 4

Different types of noise present...

In case of overdispersion, 1 of the type | error rate (prob. to declare incorrectly
a gene DE).
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Alternative : Negative Binomial Models

A supplementary dispersion parameter ¢ to model the variance

Y; follows a Negative Binomial distribution (mean = p;;, dispersion = ¢;)

Poisson vs Negative Binomial Models

0.20 025
L L

0.15
L

Probability

0.10
s

0.05
s

= Poisson(lambda = 8)
= NB(mu = 8, size = .5)
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Types of noise in data

1. Shot noise: unavoidable noise inherent in counting process (dominant for
weakly expressed genes)

2. Technical noise: from sample preparation and sequencing, hopefully
negligable

3. Biological noise: unaccounted for differences between samples (dominant
for strongly expressed genes)
Coefficient of Variation

Normalized measure of dispersion, ratio of the standard deviation to the mean

In the negative binomial model,

CV2 = Cvtzechnique + CVE/O’ngque
1
= —+ 9
iy

BY NC
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Estimation the dispersion: the key question

One solution: compromise between gene-specific and common
dispersion parameter estimation

» edgeR: borrow information across genes for stable estimates of ¢
3 ways to estimate ¢ (common, trended, tagwise)

» DESeq: data-driven relationship of variance and mean estimated using
parametric or local regression for robust fit across genes

Method Variance Reference
DESeq (1 + ¢,p)  Anders et Huber (2010)
edgeR (1 + ¢p)  Robinson et Smyth (2009)

I N RM @ ®®© Analysis of RNA-Seq data with Galaxy
BY NC
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the DESeq?2 pipeline

Model

Yj ~ NB(mean = p;, dispersion = ¢;)

Hij = Sij * Gy

log g; = >, X Bir, where X = [x;] is the design matrix and (3 is the vector of
coefficients.

Main steps performed by the DESeq function:

1. estimation of size factors s; = s; by
2. estimation of dispersion by
3. negative binomial GLM fitting for 3; and Wald statistics by

Remark: the method implemented in the DESeq2 package is quite different
than the method proposed in the DESeq paper (Anders and Huber 2010)

I N RM Analysis of RNA-Seq data with Galaxy 75103
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Estimating dispersion parameters

estimateDispersions

1. calculation of a preliminary gene-wise dispersion estimates by maximum
likelihood
few samples — strong fluctuation aroung the true values;

2. fitting of a trend curve to capture the dependence of these estimates on
average expression strength;

3. the final estimates of dispersion results in a shrinkage of the noisy
gene-wise estimates towards a consensus.

T T T
1601 16401 16403 16405

BY NC
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Shrinkage estimation of logFCs

Observation

Variance of logFCs depends on mean count (heteroskedasticity)
logFC estimates for genes with low read count have a strong variance

— effect sizes difficult to compare across the dynamic range of the data
Shrinkage estimation

DESeq2 propose to shrink logFCs estimates toward zero in a manner such
that shrinkage is stronger when the available information for a gene is low
(because low counts, high dispersion or few degrees of freedom)
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More than two conditions - GLM framework

Yo ~ NB(mean = pig;, dispersion = ¢4) with log(14) = log(s;) + log(qgg;) in
which:

> s is the (gene-specific g) library size for sample j,

> logqg = >, XiBgr Where X = [x;] is the design matrix and /3 is the

vector of coefficients.

A Generalized Linear Model (GLM) allows to decompose the effects on the
mean of

» different factors,

> their interactions.

BY NC

78/103



Comparaison of 11 differential analysis methods
Soneson and Delorenzi, Rapaport et al. (2013), Schurch et al. (2016)

» The number of replicates matters!

> Small number of replicates (2-3) or low expression — be careful!!
> Large number of replicates (10 or so) or very high expression — method
choice does not matter much.
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Comparaison of 11 differential analysis methods
Soneson and Delorenzi, Rapaport et al. (2013), Schurch et al. (2016)

» Results are more accurate and less variable between methods if DE
genes are regulated in both directions.

» Outlier counts affect different methods in different ways
Removing genes with outlier counts or using non-parametric methods
reduce the sensitivity to outliers

» The dispersion estimation method matters! Allow tagwise dispersion
values is better.

» Normalization methods have problems when all DE genes are regulated
in one direction. Iterative approaches like TCC improve performance
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Why is robustness
needed?

Transcriptome genetics using second generation

| inginaC

POpP

Stephen B. Montgomery ', Micha Sammeth’, Maria Gutierrez-Arcelus', Radoslaw P. Lach, Catherne Ingle’,
James Nisbett’, Roderic Guigo® & Emmanoul T. Dermitzakis

Nature, 2010

Random split of dataset: n;=5; n,=5 - Very little true differential expression
Results driven by outliers

CPMs
(counts
per
million)

INRAZ

NA19222 NA12287 NA19172 NA11881 NA18871 NA12872 NA18916 NA18856 NA19193 NA19:
0 178.1 0 0 0 0.0 0.0

.0 1. 0. .5 0. .0 . 0.0
2.0 0.6 6.8 60.2 1.0 0.0 0.0 1.3
3.5 0.6 1.0 35.9 0.0 0.4 0.0 4.7
1.0 5.1 2.9 0.0 0.0 0.8 0.0 0.4
0.0 1.3 1.9 0.0 0.5 46.1 0.0 1.3
13.8 1.3 0.0 7.1 0.0 0.0 1.0 1.3
23.7 111.0 77.0  129.5 10.0 45.3 27.4 26.3 19.1
2.0 15.2 19.5 13.2 10.0 29.6 0.0 1.3 5.5
3.0 6.3 7.8 7.6 0.0 5.5 3.0 3.1 2.5
1.0 12.1 0.0 1.0 1.0 0.0 1.0 0.0 9.0
0.0 1.9 1.0 0.0 0.5 29.6 0.0 24.4 5.5
24.6 31.1 4.9 21.2 4.5 8.3 10.1 8.1 0.4
TogFC  1ogCPM R PValue FDR
-10. 413038 4, 186203 30 07924 4.147469e-08 0.0002239513
-5.942865 4. .6 5.29936%e-08 0.0002239513
-6.387829 5.576979 26 06085 3.308237e-07 0.0009320406
-5.808379 3.183079 22.51927 2.080466e-06 0.0043960241
5.746084 3.921353 21.37010 3.78629%-06 0.0064003595
-4,573655 2.512035 20.13483 7.217026e-06 0.0101663841
-2.154480 6.128702 18.44343 1.750229%-05 0.0211327628
-4.575934 6.873996 18.14127 2.051076e-05 0.0211672325
-3.843458 4.473754 17.71318 2.568407e-05 0.0211672325
-4.786326 2.416892 17.66324 2.636730e-05 0.0211672325
4.311717 2.683367 17.57990 2.754846e-05 0.0211672325
4

-3.014484 4.821100 17.05690 3.

627624e-05 0.0255505626

o8
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DESeq2 robustness policy

NB framework

DESeq2, edgeR rely on the NB distribution which is versatile in having a mean
and dispersion parameter. Extreme counts in individual samples might not fit
well to the NB.

DESeq?2 strategy

1. calculate Cook’s distance (measure of how much the fitted coefficients
would change if an individual sample were remove)

2. filter genes with outliers
Can inadvertently filter interesting genes

I N RM Analysis of RNA-Seq data with Galaxy 82103
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Interpretation - Statistical significance and practical
importance

» Practical importance and statistical significance (detectability) have little to
do with each other.

> An effect can be important, but undetectable (statistically insignificant)
because the data are few, irrelevant, or of poor quality.

» An effect can be statistically significant (detectable) even if it is small and
unimportant, if the data are many and of high quality.
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Your turn ! TP - Differential analysis

DE genes between WT and CodY mutant in rich growth conditions
» differential analysis with DESeq2 and edgeR
> MA-plot
» Volcano-plot



Differential Analysis : key points

v

>
>

Methods dedicated to microarrays are not applicable to RNA-seq
Small number of replicates (2-3) or low expression — be careful!!

Large number of replicates (10 or so) or very high expression — method
choice does not matter much.

Filtering the data(genes with outliers or low counts) may be interesting
Don't forget to correct for multiple testing !

Adapt the method to your data (nb of rep.)

Specific methods developped for few replicates.

The need for ’sophisticated’ methods decreases when the number of replicates
increases.
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Normalization
Differential analysis

Multiple testing

Q0O
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Multiple Testing

False positive (FP) (type | error : o) : A non differentially expressed (DE) gene
which is declared DE.

For all 'genes’, we test H, (gene i is not DE) vs H; (the gene is DE) using a
statistical test (calcul of a score)

Pb :

Let assume all the G genes are not DE. Each test is realized at « level
Ex: G = 10000 genes and o = 0.05 — E(FP) = 500 genes.

I N RM Analysis of RNA-Seq data with Galaxy 871103
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Simultaneous test of G null hypotheses

Reality

Declared Declared
non diff. exp. diff. exp.

Go non DE genes

G; DE genes

True Negatives (7N) False Positives (FP)

False Negatives (FN) True Positives (7P)

G Genes

INRAZ

N Negatives P Positives

Aim : minimize FP and FN.
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Standard approach to the multiple testing problem
Dudoit et al. (2003)

1. Computing a test statistic for each gene i

2. Applying a multiple testing procedure to determine which hypotheses to
reject while controlling a suitable defined type | error rate

Multiple testing prodecure

It controls a particular type | error rate at level «v if the error rate is < « when
the procedure is applied to produce a list of P rejected hypotheses (DE genes).
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The Family Wise Error Rate (FWER)

Definition
Probability of having at least one Type | error (false positive), of declaring DE at

least one non DE gene.
FWER =P(FP > 1)

The Bonferroni procedure

> Either each test is realized at « = «* /G level
> or use of adjusted pvalue pBonf; = min(1, p; * G) and FWER < «o*.
For G = 2000, < o* = 0.05, a = 2.5107°,

Easy but conservative and not powerful.
When the number of tests increases, the FWER — 1 with constant FP.
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The False Discovery Rate (FDR)

Idea: Do not control the error rate but the proportion of error
=> less conservative than control of the FWER.

Definition

The false discovery rate of Benjamini and Hochberg (1995) is the expected
proportion of Type | errors among the rejected hypotheses

FDR = E(FP/P)if P > 0and 0if P =0

Prop

FDR < FWER
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The False Discovery Rate - Benjamini et Hochberg (95)

Principle: The number of declared positive elements P is given by the greater i
Py < ia*/G.

Prop

In case of independant tests, FDR < (Gy/G)a* < o*

Prop

FDR Benjamini-Hochberg : my = %:1
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p-values histograms for diagnosis

Examples of expected overall distribution

z z
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p-values p-values

(a): the most desirable shape

(b): very low counts genes usually have large p-values

—
Qo

: do not expect positive tests after correction

I N RM Analysis of RNA-Seq data with Galaxy 94/103
BV NG



p-values histograms for diagnosis

Examples of not expected overall distribution

(a) (b) (c)
WWWWW i .

(a): indicates a batch effect (confounding hidden variables)

(b): the test statistics may be inappropriate (due to strong correlation structure
for instance)

(c): discrete distribution of p-values: unexpected



Your turn ! TP - Multiple tests

Calculate adjusted pvalues with the Bonferroni and BH procedures for the
difference CodY vs WT in minimal growth conditions
padjust

» Histogram of raw Pvalues

» How many DE genes with a = 0.01 for each procedure ?
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Your turn | TP - Venn diagramm

Comparaison between minimal and rich growth conditions

» Venn diagramm
the venn function
http://bioinfo.genotoul.fr/jvenn/ (Bardou et al. 2014)

» How to export results ?
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Multiple testing: key points

» Important to control for multiple tests
» FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER

Having a great confidendence on the DE elements (strong control). Accepting
to not detect some elements (lack of power < a few DE elements)

Controlling the FDR

Accepting a proportion of FP among DE elements. Very interesting in
exploratory study.
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Introduction

Differential analysis
Normalization
Differential analysis

Multiple testing

Conclusion
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General conclusions and perspectives

Pratical conclusions
» Need to collaborate between biologists, bioinformaticians et statisticians
and in a ideal world since the project construction

» Collect knowledge on the project and metadata from experiment and
sequencing

» Choose and adapt the methods and tools to the asked question (no
pipeline)

» Checks all the steps of the data analysis (quality, alignment,
quantification, normalization, differential analysis .. .)

And after ?

» Interpretation
» Functional analysis

» Gene network
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More ressources for Galaxy trainings

RNA-seq counts to genes
https://www.usegalaxy.fr/training-material/topics/
transcriptomics/tutorials/rna-seq-counts-to-genes/tutorial.html
Visualization of RNA-Seq results with heatmap?2

https:
//www.usegalaxy.fr/training-material/topics/transcriptomics/
tutorials/rna-seq-viz-with-heatmap2/tutorial.html

Visualization of RNA-Seq results with Volcano Plot

https:
//www.usegalaxy.fr/training-material/topics/transcriptomics/
tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
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DESeq2

» Anders, S, Huber, W. (2010) Differential expression analysis for sequence count data,
Genome Biology,11:R1086.

» Anders, S, McCarthy, DJ, Chen, Y, Okoniewski, M, Smyth GK, Huber, W and Robinson, MD
(2013) Count-based differential expression analysis of RNA sequencing data using R
and Bioconductor, Nature Protocols, doi:10.1038.

» Love, Michael and Huber, Wolfgang and Anders, Simon. (2014) Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2, Genome Biology.
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Other references for differential analysis

Normalization

» The French StatOmique Consortium (2012); Dillies, M.A.; Rau, A.; Aubert, J.;
Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime, C.; Marot, G.; Castel, D.; Estelle,
J.; Guernec, G.; Jagla, B.; Jouneau, L.; Lalog, D.; Le Gall, C.; Schaéffer, B.; Le Crom, S.;
Guedj, M.; Jaffrezic, F.;. A comprehensive evaluation of normalization methods for
lllumina high-throughput RNA sequencing data analysis., Briefings in Bioinformatics Vol.
17 Sept, 13 p; open access : doi : 10.1093./bib/bbs046.

» Robinson MD, Oshlack A. (2010) A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biology, 11 :R25.

> Evans C., Hardin J., Stoebel D. (2016) Selecting between-sample RNA-Seq
normalization methods from the perspective of their assumptions. arXiv:1609.00959

Differential analysis

» Robinson MD, McCarthy DJ, Smyth, GK. (2009) edgeR : a Bioconductor package for
differential expression analysis of digital gene expression data, Bioinformatics.

|
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Multiple Hypothesis Testing

» Benjamini and Hochberg (1995), Controlling the false discovery rate : a practical and
powerful approach to multiple testing, JRSS B, 57(1),289-300.

> Dudoit, S., Popper Shaffer, J and Boldrick, JC (2003), Multiple Hypothesis Testing in
Microarray Experiments, Statistical Science, 28(1), 71-103.
» Storey and Tibshirani (2003), Statistical significance for genome-wide studies, PNAS,
100(16), 9440-9445.
Venn diagram

» Bardou, P. and Mariette, J. and Escudie, F. and Djemiel, C. and Klopp, C. (2014), jvenn: an
interactive Venn diagram viewer. BMC Bioinformatics, 15:293.
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