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Practical informations

9h30 - 17h00

2 breaks morning and afternoon

Lunch break of 1 hour
Remote session ... please be comprehensive !
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Remote sessions rules

e Even remotely, it should be interactive !
e Please interrupt us:

o raise (virtually) your hand
o ask questions in the chat

e Practical session will be different :

o tutorial support with practice to do on your own during a few minutes
o group synchronization to be sure everyone follows
o Inform us of your progress :

= Ask (any) questions

= Use green / red reactions
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|ce breaking session

Who are you?

o Institution, laboratory, position ...
Why are your here

o What are your needs in NGS data analysis?
Do you have already dealt with NGS data?

o Which kind of data?

o Aim of the study?
Have you ever used Galaxy ?
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Migale team

e Migale website
o Infrastructure for bioinformatics
o storage, compute
o tools, databanks
o interfaces (Galaxy)
e Dedicated service to Data Analysis
o Specialists in Metagenomics
o Bioinformatics & Statistics
o More than 60 projects since 2016
o Collaboration or Accompaniment
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https://migale.inrae.fr/

We are
bioinFormaticians
thats what we do

Sarmple preparation

'('(""]Uﬁ‘:l:x’ing

R
Yty Gere identification

.'-;ﬁ\?? L/? Vovel denes

Discoveries, ek

Hp:ilecomicals Blogspob o

6/109



Objectives

After this training day, you will know:

» the characteristics of the main types of sequencers
how to do a quality control of the raw sequences
how to assemble a (small) genome

how to align reads to a reference genome

how to explore graphically an alignment

how to compare assemblies
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Program

Morning

e Introduction & Round table
e Sequencing technologies

Break

e Quality Control
e Data cleaning
e Assembly

Afternoon

e Assembly evaluation and comparison
Break

e Mapping
e Visualisation
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Next generation Sequencing in a few slides
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Sequencing Cost per Megabase

Cost per Raw Megabase of DNA Sequence

10,000.000

1,000.000

100.000 Moore’s Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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Genome Sequencing, why ?

Interest in a genome that has not yet been sequenced

e Assembly and annotation
o de novo sequencing
o chromosomal rearrangements
o metagenomics

A reference genome is available

e Alignment (mapping) of reads on the genome
o Detection of genomic variants (SNPs)
o RNA-seq (gene expression)
ChIP-seq (regulation of gene expression)
Chromosomal rearrangements, variation in gene copy number
Detection of small non-coding RNAs
metagenomics

o

o O O
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Sequencing challenges

Smallest known (non viral) genome:
e Carsonella ruddii = 0.16 Mbp
Largest known genome:

e Paris japonica = 150 Gbp
e Amoeba dubia = 670 Gbp

Maximum Reads Size :

e 1st generation (Sanger): up to 900 bp
e 2nd generation: up to 500 bp
e 3rd generation: up to 100 - 1000 Kbp

Need to cut the genome into millions of fragments (shotgun sequencing) from the 2 DNA
strands.

The operation to reconstruct the genetic elements from the raw reads is called assembly.
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Sequencing technologies

e First generation :
o Sanger sequencing
o First step : fragment cloning
o Reads up to 900 bp
o Expensive
o low throughput
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Next generation Sequencing technologies

Second generation (since 2007)

434 - Sequencing by Synthesis - PCR Amplification

SOLIiD : Sequencing by Ligation - PCR Amplification

Ion Torrent : Sequencing by Synthesis - PCR Amplification
Illumina : Sequencing by Synthesis - PCR Amplification

14 /109



llumina : principles

e Based on "reversible terminated chemistry" : reversible terminators that enable the
identification of single nucleotides as they are washed over DNA strands.

Three steps:
o Amplification of DNA fragments
e Sequencing

e Analysis

Reference : Technology Spotlight: [llumina® Sequencing

15/109


https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

Prepare genomic DNA samples
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Randomly fragment genomic DNA and ligate adapters to both ends of the fragments

16 /109



Attach DNA to Flow Cell Surface

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.
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Bridge Amplification
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Add unlabelled nucleotides and enzyme to initiate solid-phase bridge amplification.
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Fragments Become Double Stranded
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The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase
substrate.
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Denature the Double-Stranded Molecule

Denaturation leaves single-stranded templates anchored to the substrate.
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Complete Amplification
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Several millions dense clusters of double-stranded DNA are grated in in channel of the flow
cell.
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Determine First Base

Laser

The first sequencing cycle begins by adding four labelled reversible terminators, primers,
and DNA polymerase.

22 /109



Image First Base

After laser excitation, the emitted fluorescence from each cluster is captured and the first
base is identified.

The blocked 3' terminus and florphore are removed,flow cell washed, leaving the terminator
free for a second cycle.
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Determine Second Base
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The next cycle repeats the incorporation of four labelled reversible terminators, primers, and
DNA polymerase.
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Image Second Chemistry Cycle
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After laser excitation, the image is captured as before, and the identity of the second base is
recorded.
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Sequencing Over Multiple Chemistry Cycles
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The sequencing cycles are repeated to determine the sequence of bases in a fragment, one
base at a time.

Millions of clusters are processed in parallel, allowing high-throughput sequencing.
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llumina : summary

High precision >99.5% (main type or errors : substitutions)
Short reads (maximum 2 x 250)

Huge throughput (up to 6 Tbhp per run on NovaSeq)

Some under-representation of rich AT- and GC- regions.
Video
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https://youtu.be/fCd6B5HRaZ8

Sequencing - Glossary

Read : piece of sequenced DNA

DNA fragment = 1 or more reads
depending on whether the sequencing is
single end or paired-end

Insert = Fragment size

Depth=N x L/G

N = number of reads,
L = size,

G = genome size

Coverage = % of genome covered

. .
Single-end Paired-end
Séquencage fragment 1 (forward) Séquengage fragment 1 (forward)
Séquencage fragment 2 (reverse) €—)
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3d generation

Target the weaknesses of the 2nd generation :

e PCR amplification
e Short reads

Two main competitors (in production ) :

 Pacific Bioscience (PacBio)
o Oxford Nanopore Technologies (ONT)
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PacBio
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A polymerase is immobilized at the bottom of a sequencing unit called zero-mode waveguide
(ZMW) .Four fluorescent-labelled nucleotides, which generate distinct emission spectrums,
are added to the SMRT cell. As a base is held by the polymerase, a light pulse is produced that
identifies the base. The replication processes in all ZMWs of a SMRT cell are recorded by a

“movie” of light pulses, and the pulses corresponding to each ZMW can be interpreted to be a
sequence of bases.

Reference
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https://doi.org/10.1126/science.1162986

PacBio : summary

Long reads (up to Kbs with Sequelll)
Depends on DNA quality

High error rate. Tend to lower with depth
Medium throughput

Applications :

» IsoSeq (RNA Isoform full length sequencing)
e Detection of DNA modification
e Assembly
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Oxford Nanopore
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Oxford Nanopore
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MinION, GridION, PromethION
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Sequencing on The ISS
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Fig. 1 Astronaut Kate Rubins on the ISS 35/109




ONT Summary

Ultra long reads (up to1 Mb (!) )

Length of the reads depends on DNA quality

Low to high throughput

"On field" sequencing

Direct RNA sequencing, peptide sequencing

High error rate (5-10%), tends to lower with new chemistry, base calling algorithms and
depth

Applications :

e Full length isofrom sequencing, direct RNA sequencing
e Detection of DNA modification
e Assembly
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An other view on sequencing technologies (pro

date
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Global Summary (probably out of date

Read length | Throughput | # of reads per Error profile Cost/Gbp
in bp per run run (USS)

Roche 454 GS FLX Up to 1000 700 Mb ~1M 1d 1%, indels $9500
titanium XL+

lllumina MiSeq v3 300 (PE) 15 Gb 50 M 2d 0.1% substitutions $110
Illumina NextSeqg 150 (PE) 120 Gb 800 M 1d <1%, substitutions $33
500/550

Illumina HiSeqg 150 (PE) 700 Gb 2.5 B (SE) 3d 0.1% substitutions $22
3000/4000

Illumina HiSeg X 150 (PE) 850 Gb x 10 3 B (PE) <3d 0.1% substitutions S7
Illumina NovaSeq 150 (PE) 6 Thp 20 B (PE) 4d 0.1% substitutions S7

lon Torrent PGM 200 (SE) 600 Mb -1 Gb 5M 4h 1%, indels $600
lon Torrent Proton 200 (SE) 10 Gb 70M 3h 1%, indels $80
Pacific Biosciences  Up to 60 Kb 5-10 Gb <100 K 4h 10-15%, indels $800
sequel

ONT MK1 MinION Up to 1Mb! Upto1lGb >100 K 2d 15%, indels $750
lllumina synthetic ~100 Kb 500 Gb 4B (PE) 6d 0.1%, substitutions $33 + 5500
long reads per sample

An interesting review (Goodwin, McPherson, and McCombie, 2016)

Nature review : Milestones in Genomic Sequencing 38 /109


https://doi.org/10.1038/nrg.2016.49
https://www.nature.com/immersive/d42859-020-00099-0/index.html

Switch to Hands-on:

Connect to Galaxy
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Practical session :

e Escherichia coli genome (re)sequencing
o [llumina MiSeq
o Paired-end sequencing (2*150bp , insert size ~300bp)
o Sub-sampled
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Connect to Galaxy

https://galaxy.migale.inrae.fr

Login : stageXX

Data in Shared Data / Data Libraries / formation NGS / Reads

References in Shared Data / Data Libraries / formation NGS / Refs
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https://galaxy.migale.inrae.fr/

FASTQ format
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FASTQ syntax

The FASTQ format is the de facto standard by which all sequencing instruments represent
data. It may be thought of as a variant of the FASTA format that allows it to associate a quality

measure to each sequence base: FASTA with QUALITIES.
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FASTQ syntax

The FASTQ format consists of 4 sections:

1. A FASTA-like header, but instead of the > symbol it uses the @ symbol. This is followed by
an ID and more optional text, similar to the FASTA headers.

2. The second section contains the measured sequence (typically on a single line), but it may
be wrapped until the + sign starts the next section.

3. The third section is marked by the + sign and may be optionally followed by the same
sequence id and header as the first section

4. The last line encodes the quality values for the sequence in section 2, and must be of the
same length as section 2.
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FASTQ syntax

Example

@QSEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+

DU CCCCHR*%+) ) %hJ6++) (%6%6%6%6)  L***—4% 1 1) )**55CCF>>>>>>CCCCCCCH5
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FASTQ quality

Each character represents a numerical value: a so-called Phred score, encoded via a single

letter encoding.

!"#$%&'()*+,—./?1234?6789i;<=>T@ABC?EFGHT
| I |
0....5...10...15...20...25...30...35...40

| | | | | | | | |
b

The numbers represent the error probabilities via the formula: Error = 10— F/10

It is basically summarized as:

P=0 means 1/1 (100% probability of error)

P=10 means 1/10 (10% probability of error)
P=20 means 1/100 (1% probability of error)
P=30 means 1/1000 (0.1% probability of error)
P=40 means 1/10000 (0.01% probability of error)
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FAS]

There was a time when instrumentation makers could not decide at what character to start
the scale. The current standard shown above is the so-called Sanger (+33) format where the
ASCII codes are shifted by 33. There is the so-called +64 format that starts close to where the

() quality encoding specificities

other scale ends.

S555555555555555555555555555555555555555 5 e ccuescascscsassssscsnssscssassssssassscssassssssssssasasss
.......................... ).9.9.9.90.0.000.9.000.90.0000.6000.0000.0000.600.0.0.09.0.0.0.9.9.6.6.9.¢ SR .
............................... ITITIIITIIIIITIIITII T I IIITIIITIIITIIIT I I e e e e s s s e aasnosonaonacas
LLLLLLLLLLLLLLLLLL L L L L L L L L L L L L L L L L LI LI LI e c c s s e s s s s s s s s s s s sasssssscasssssnssscssasssssncssasscss
I1"#$%8& " ()*+,-./0123456789: ;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_ ~abcdefghijklmnopqrstuvwxyz{|}-
| | | I | |
33 59 64 73 104 126
L 26...3l...0. 40
-5....00.000... L 40
Oeeeennnn e 40
0.2..ciceenencrncnnnnnnns 26...3l..ccnnen 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
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FASTQ Header informations

Information is often encoded in the “free” text section of a FASTQ file.

@EAS139:136:FC706VJ1:2:2104:15343:197393 1:Y:18:ATCACG contains the following
information:

e EAS139:the unique instrument name

e 136:therunid

e FC706V3J: the flowcell id

e 2: flowcell lane

e 2104 : tile number within the flowcell lane

e 15343: ‘X’-coordinate of the cluster within the tile

e 197393: ‘y’-coordinate of the cluster within the tile

e 1:the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
e v:Yifthe read is filtered, N otherwise

e 18:0 when none of the control bits are on, otherwise it is an even number
e ATCACG:index sequence

This information is specific to a particular instrument/vendor and may change with different

versions or releases of that instrument.
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Switch to Hands-on:

Fastq import & visualisation
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Quality control
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Why QCing your reads ?

What are the information you want to know about the sequencing when you perform
Quality Control ?

Collective Answer on this collaborative whiteboard
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http://scrumblr.ca/ngs

Why QCing your reads ?

Try to answer to (not always) simple questions:

» Are data conform to the expected level of performance?
o Size
o Number of reads
o Quality

e Residual presence of adapters or indexes ?

e Are there (un)expected technical biases

e Are there (un)expected biological biases

Quality control without context leads to misinterpretation
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Quality control for FASTQ files

e FastQC (Andrews, 2010)
o QC for (Illumina) FastQ files
o Command line fastqc or graphical interface
o Complete HTML report to spot problem originating from sequencer, library
preparation, contamination
o Summary graphs and tables to quickly assess your data

R Fastac [E=H Bl ~x3
Eile Help
bad_sequence. txt |g od_seq —r
@ Basic Statist . .
Quality scores across all bases (Ilumina =v1.3 encoding)
34
Per base sequence quality -
@ - IIIIIIIIIIIIIIIII
@ Per s2q quality scares |5 CUC 1L
@ Per base seq e content |23 3| 1] e (L
= 26 H
) per base GC content o4
(41) Per sequence GC content |22 AT
20
@ Per base N content
18
@ Segquence Length Distribution| 16
a3 14
| Sequence Duplication Levels
el 12
: | Overrepresented seqy 10
@ Kmer Cantent 9
1]
4
) [T
1 3 § 7 9 11 13 15 17 19 E 23 25 2ZF &9 31 33 3® 3IF I
Position in read (bp)

o https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/ 54 /109


http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/

Switch to Hands-on:
Quality Control with FastQC
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Reads cleaning
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Objectives

» Detect and remove sequencing adapters (still) present in the FastQ files
 Filter /trim reads according to quality (as plotted in FastQC)

Tools

o Simple & fast : Sickle (Joshi and Fass, 2011) (quality), cutadapt (Martin, 2011) (adpater

removal)
o Ultra-configurable : Trimmomatic
e All in one & ultra-fast : fastp (Zhou, Chen, Chen, and Gu, 2018)
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main workflow paired-end preprocessor


https://dx.doi.org/10.1093/bioinformatics/bty560

Switch to hands-on:

Clean your data with Sickle
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Assembly : principles

Similar to a puzzle :

millions of pieces -without the original image

with pieces in both sense

the pieces do not necessarily fit together (sequencing errors)
parts of the puzzle are missing (cover + sequencing bias)
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Assembly

All assembly algorithms are based on read overlap.
o Different ways of calculating overlap :
e "All vs All" comparison :

o "old" assemblers based on this approach

o Graph representing overlap between reads

o Quadratic number of comparison (number of reads”2 )
o do not scale with billion of reads

e de Bruijn Graph

o Named after Nicolaas Govert de Bruijn
o Directed graph representing overlaps between sequences of symbols
o Sequences can be reconstructed by moving between nodes in graph

Slide Credits
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https://galaxyproject.github.io/training-material/topics/assembly/tutorials/debruijn-graph-assembly/slides.html

De Bruijn Graph

e A directed graph of sequences of symbols
e Nodes in the graph are k-mers
o Edges represent consecutive k-mers (which overlap by k-1 symbols)

Consider the 2 symbol alphabet (0 & 1) de Bruijn Graph for k =3
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Producing sequences

e Sequences of symbols are produced by moving through the graph
e.g. 111000 =111 -> 110 -> 100 -> 000

111

1160
100
0 0 0

111000
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K-mers ?

e To be able to use de Bruijn graphs, we need reads of length L to overlap by L-1 bases.
e Not all reads will overlap another read perfectly.

o Read errors

o Coverage "holes"
e Not all reads are the same length (depending on technology and quality clean-up)

To help us get around these problems, we use all k-length subsequences of the reads,
these are the k-mers.
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What are K-mers ?

TTGACACTTACCGA

TTGACACTTACC
TGACACTTACCG
GACACTTACCGA

TTGAC
TGACA
GACAC
ACACT
CACTT
ACTTA
CTTAC
TTACC
TACCG
ACCGA

—

—

—

Read

— k-mers for k=12

— k-mers for k=5
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K-mers de Bruijn graph

Example #1:
HAPPI PINE INESS APPIN
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K-mers de Bruijn graph
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K-mers de Bruijn graph

Example #1:
HAPPI PINE INESS APPIN

K =4 kK-mers:

HAPP PPIN
HAPP APPI
\ APPI PINE

PINE PPIN
INES NESS

NESS

.

NINES (

67 /109



The problem of repeats

Example #2:
MISSIS SSISSI SSIPPI

All 4-mers (9):

MISS SSIS SSIP
ISSI SISS SIPP
SSIS ISSI IPPI

Unique 4-mers (7):
MISS SSIS SSIP ISSI SISS SIPP IPPI
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The problem of repeats

Example #2:

MISSIS SSISSI SSIPPI

All 4-mers:

MISS ISSI SSIS SISS SSIP SIPP IPPI

MIS;;;;‘ISSI

SSIS

<

SSTIP

SISS*:;>

Y

SIPP —*

IPPI
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The problem of repeats

Example #2:

MISSIS SSISSI SSIPPI

All 4-mers:

MISS ISSI SSIS SISS SSIP SIPP IPPI

SSIS

Y

SISS—::>

MIS;;;;:ISSI

<

MISSISSIPPI or MISSISSISSISSIPPI or...

SSTIP

Y

SIPP

Y

IPPI
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Different k

Example #2a:
MISSIS SSISSI SSIPPI

All 5-mers (6):
MISSI SSISS SSIPP
ISSIS SISSI SIPPI

Unique 5-mers (6, no duplicates):
MISSI ISSIS SSISS SISSI SSIPP SIPPI
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Different k

Example #2a:
MISSIS SSISSI SSIPPI

This time k = 5 k-mers:
MISSI ISSIS SSISS SISSI SSIPP SIPPI

MISSI ISSIS > SSISS ™ SISSI7 No connection

between
—
SSIPP |—{ SIPPI theseTwo
nodes!

2 contigs : MISSISSIS SSIPPI
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Choose k wisely

e Lower k
o More connections
o Less chance of resolving small repeats
o Higher k-mer coverage

e Higher k
o Less connections
o More chance of resolving small repeats
o Lower k-mer coverage

Optimum value for k will balance these effects.
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Sequencing errors

Example #3:
HAPPI INESS APLIN PINET

kK = 3 k-mers:
HAP APP PPI INE NES ESS APL PLI LIN PIN NET
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Sequencing errors

Example #3:

HAPPI INESS APLIN PINET

k = 3 k-mers:
HAP APP PPI INE NES ESS APL PLI LIN PIN NET

HAP

PPI

PIN

NES

ESS

y

APP
APL

PLI

LIN

INE

(

NET
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Sequencing errors
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More coverage

e Errors won't be duplicated in every read
e Most reads will be error free

e We can count the frequency of each k-mer

e Annotate the graph with the frequencies

o Use the frequency data to clean the de Bruijn graph

More coverage depth will help overcome errors!
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Sequencing errors - coverage

Example #3a :
HAPPI INESS APLIN PINET
HAPPI INESS
HAPPI INESS

k = 3 k-mers:

HAPx3 APPx3 PPIx3 INEx4 NESx3 ESSx3 APLx1 PLIx1

LINx1 PINx1 NETx1

3 3 3 3 3
3 APP — PPI —{ PIN \ 4 NES —{ ESS
HAP / INE <
APL —{ PLI —{ LIN NET

1 1 1

Which path looks most valid ? Why ?
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An important parameter : coverage cutoff

e At what point is a low coverage indicative of an error?
e Can we ignore low coverage nodes and paths?
e This is a new assembly parameter

Coverage cut-off is an important parameter to differentiate error from real variations
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de Bruijn Graph Assembly process

1. Select a value for k

2. "Hash" the reads (make the kmers)

3. Count the kmers

4. Make the de Bruijn graph

5. Perform graph simplification steps - use cov cutoff
6. Read off contigs from simplified graph
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Graph simplification : Chain Merging

e \When there are two connected nodes without a )
&‘“(a%'*%'('
4 ()

divergence, merge the two nodes.
‘JACCA

Already merged node

Further merging possible

Zerbino & Birney, 2008
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Graph simplification : Tip Clipping

e Clip tips if the length of the tipis <2 x k

(6

CGATTAAC

GCTAATTG

L

GAACTGG

CTTGACC
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Graph simplification : Bubble Collapsing
Step 3: Bubble collapsing

B C
| |£ ,Jf |
\ S e Detect redundant paths through
graph
e Compare the paths using
LA B S, I, sequence alignment
\SCE———4 e If similar, merge the paths
Image: Zerbino & Birney 2008
(A B C D E_|
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Make contigs

Find an unbalanced node in the graph

Follow the chain of nodes and "read off" the bases to produce the contigs

Where there is an ambiguous divergence/convergence, stop the current contig and start a
new one.

Re-trace the reads through the contigs to help with repeat resolution

84 /109



Graph simplification : Remove low coverage nodes

e remove erroneous nodes and edges using the "coverage cutoff”

e genuine short nodes will be kept because of their high coverage
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Assemble with SPADES

SPADES (Bankevich, Nurk, Antipov, Gurevich, Dvorkin, Kulikov, Lesin, Nikolenko, Pham,

Prjibelski, and others, 2012)is the de Bruijn graph assembler by Pavel Pevzner's group out of
St. Petersburg

e Uses multiple k-mers to build the graph
o Graph has connectivity and specificity
o Usually use a low, medium and high k-mer size together.
e Performs error correction on the reads first
e Maps reads back to the contigs and scaffolds as a check
e Under active development
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Switch to Hands-on:
Assembly with SPADES
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Assessment of assembly quality

After assembly, we use QUAST (Gurevich, Saveliev, Vyahhi, and Tesler, 2013) to evaluate and
compare genome assemblies.

What QUAST does :

e De novo genome assembly evaluation
o Reference-based evaluation

e Evaluating so-called misassemblies

e Report and visualisation
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De novo metrics

Evaluation of the assembly based on

Number of contigs greater than a given threshold (0, 500nct, 1kb)

Total / threshold assembly size

largest contig size

N50 : the sequence length of the shortest contig at 50% of the total assembly length
(equivalent to a median of contig lengths)

L50 : the number of contigs at 50% of the total assembly length

N75/L75 idem, for 75% of the assembly length
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Reference-based metrics

e Metrics based on based on an alignment of all contigs on a reference genome. :
duplication rate

percent genome complete

NGAS5O0 : equivalent of N50 but with the aligned block of the contigs
"Misassemblies" : breakpoint of alignment in a contigs. "

Visualisation available

o O O O O
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Switch to Hands-on:
Assembly QC with Quast
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Alignment
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Alignment strategies

GAAGCTCTAGGATTACGATCTTGATCGCCGGGAAATTATGATCCTGACCTGAGTTTAAGGCATGGACCCATAA
ATCTTGATCGCCGAC----ATT # GLOBAL -
ATCTTGATCGCCGACATT # LOCAL, with soft clipping

Global alignment

Global alignments, which attempt to align every residue in every sequence, are most useful
when the sequences in the query set are similar and of roughly equal size. (This does not
mean global alignments cannot start and/or end in gaps.) A general global alignment
technique is the Needleman-Wunsch algorithm, which is based on dynamic programming.
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Alignment strategies

GAAGCTCTAGGATTACGATCTTGATCGCCGGGAAATTATGATCCTGACCTGAGTTTAAGGCATGGACCCATAA
ATCTTGATCGCCGAC----ATT # GLOBAL -
ATCTTGATCGCCGACATT # LOCAL, with soft clipping

Local alignment

Local alignments are more useful for dissimilar sequences that are suspected to contain
regions of similarity or similar sequence motifs within their larger sequence context. The
Smith-Waterman algorithm 1S a general local alignment method based on the same dynamic
programming scheme but with additional choices to start and end at any place.
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Seed-and-extend especially adapted to NGS data

{a) Overlap, Layout, Consensus assambly (b) De Bruijn graph assembly
{i) Find overlaps (i) Make kmers

. e

il Y.l N Readl: TICTAAGT Read?: CGATTCTA  Readd: GATTCTAA

[ Baeadl ] : Read? ‘ [ Read3 ] K rs I'E:._._ Emsrs: l_.:;:'." Kmers § .-u;.E“

= 7

e I TREE
ARG TCT

(il) Layout reads

Read2
|_Read1 ) -‘ o (TR oo - o) So(h) Lo(7)
| Read3 | Ny v A
Calad
il il
M) B conssrmus - (ili) Walk graph and output contigs
GATTGTAA
CGATTCTAAGT CGATTCTAAGT

95/109



Seed-and-extend especially adapted to NGS data

Seed-and-extend mappers are a class of 1. The mapper obtains a read
read mappers that break down each read 2. The mapper selects smaller DNA
sequence into seeds (i.e., smaller segments) segments from the read to serve as
to find locations in the reference genome seeds
that closely match the read. 3. The mapper indexes a data structure
with each seed to obtain a list of
o Read : ; possible locations within the reference
Lo e e e ] genome that could result in a match
91 Seeds 4. For each possible location in the list, the
@ [biﬁlu'—] mapper obtains the corresponding DNA
‘- sequence from the reference genome
oot 16 TG T ] 5. The mapper aligns the read sequence to
pata | TAcoASSSTTTOR 15 | 15 | 1 } ' the reference sequence, using an
Structure [ crascoroccrTie{ 18 | 19 [0 | . . .
conraTaceTAch 1] 2] B3] 1] Reference expensive sequence alignment (i.e.,
o l verification) algorithm to determine the
e ————— similarity between the read sequence
3 Reference Fragment and the reference sequence.

9| Alignment / Verification l 9 6 / 1 09



Mapping

o For further analysis it is necessary to map all the reads on the contigs.

BWA
Mauve BLASR SOAP
Mummer / _lagan

. e I Bowtie

Mayld \ 4. __~Chaining & Netting
=\ BLasTZ
N
SHRIMP
FASTA ELAND
) -
BLAST = Pair-HMM

BLAT Exonerate Smith-Waterman

Needleman-Wuncsh

Figure 1 An illustration of relationships between alignment methods. The applications / correspending computational restrictions shown are
(green) short pairwise alignment / detailed edit model; (yellow) database search / divergent homology detection; (red) whole genome alignment /
alignment of long sequences with structural rearrangements; and (blue) short read mapping / rapid alignment of massive numbers of short
sequences. Although solely illustrative, methods with more similar data structures or algorithmic approaches are on closer branches. The BLASR
method combines data structures from short read alignment with optimization methods from whole genome alignment.

e We will use bowtie2 (Langmead and Salzberg, 2012)
o Firstly, we build an index.
o Secondly, reads are aligned.
o We can use samtools (Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis,

and Durbin, 2009) and bedtools (Quinlan and Hall, 2010) to manipulate SAM/BAM

files.
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BAM/SAM

e SAM = Sequence Alignment Map
« BAM = Binary Alignment Map

These files represent an alignment of FASTQ reads against a reference like a FASTA.

» After a header section (for reference), each line represents the alignment of one read.

@SQ SN:ref LN

r001 99 ref
r002 0 ref
r003 0 ref
r004 0 ref
r003 2064 ref
r001 147 ref

@HD VN:1.5 SO:coordinate Header

.45 section

7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

9 30 3S6M1P1I4M * 0 O AAAAGATAAGGATA *

9 30 5S86M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0; Alignment
16 30 6M14N5M * 0 O ATAGCTTCAGC * section
29 17 6HBM * 0 0 TAGGC * SA:Z:ref,9,+,556M,30,1;

37 30 9M = T -39 CAGCGGCAT * NM:i:1

|
Optional fields in the format of TAG:TYPE:VALUE

QUAL: read quality; * meaning such information is not available
SEQ: read sequence
TLEN: the number of bases covered by the reads from the same fragment. Plus/minus
means the current read is the leftmost/rightmost read. E.g. compare first and last lines.
PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when the
information is unavailable. It corresponds to POS column.
RNEXT: reference sequence name of the primary alignment of the NEXT read. For paired-end
sequencing, NEXT read is the paired read, corresponding to the RNAME column
CIGAR: summary of alignment, e.g. insertion, deletion

MAPQ: mapping quality

POS: 1-based position

RNAME: reference sequence name, e.g. chromosome/transcript id
FLAG: indicates alignment information about the read, e.g. paired, aligned, etc.

QNAME: query template name, aka. read ID
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Switch to Hands-on:

Mapping
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Visualization
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Visualization

e Some tools for visualization and browsing

o IGV (alignments and reference)
o Artemis (genome and annotations)

[ Human hg18 W cher B [che730994.815-115,233.153  (Go B < » @@|[ X 2 o =N |
o 3 P [Z Ll q q
Tme
3 - - - - LY - - LT CEY
I I | | | 1 1 1 1 | I 1 | | 1 | 1

Tl _p_TCO._E11_1isass
TRIGS_p_TCG.._DES_I3Vi5e
TRikE_s_TCO._HOB_15ET
FALLS p TOO.. O06_190672
STARR_p_TCD.._D3_21844
ETAR 5 TGO S0 rhEadi
TISL 5 TOO._EO1_1HSTHE
TRIGS_p_TCG., C23_3FMED
TRIEE_p TOO._ANS_VEETN
TGS _p_TCO.._FO3_2II2E
SMUNT p TOG. _AYT ITHMEE
STAR 5 TCO._B03_XIsesn
FALLE p TOG._CHI_NBOSSS
SMUNT p TOG. BT 10754
Tk _p TCO _HOP_1§5424
TEG._FE_160642
FALLS p_TCO.._COB_FROSED
BYAR 5 _TCO._E0n_Iieesh
TRIGS_p_TCO.._C2S_3TI1E
FALLE p_TCO,_DOT_FROLER
FGS_p VOO D8 _naE
TRIGS_p_TCO.._BET_3FI1EA
TRIGE _p TOO. 0 155743 3
SHUNT p TCO._WOE_J28PEL
TRIGS p_TOG.. DE1_2T3oes
TRIGE_p _TOO. . _CO9_1EETI0
TGS _p_TOG _Ea1_irdons
TRIBE_3_TOG._BO3_1S5845
RiRE_p_TCO. A 1558
GHATE_p_TEa._A10_168339
PUNAS p_Kin. A28 _I131TH
BT _p_TCO._040_Thiked
Toas p_Too._asd_xata |(B
TRIBE_p_TCO.. BT 15SH4
WRHIA p TEG . AS3 FRNind

3 egrr—

R— R N T

e EEFDT  meBa ThE3

W1 | N R IR | RO EIL | (N
WG Gkt GFREE  FID0 AREM EG

LOCHRIEEE  AUTEE MR

GC3 LS BRI TF

che?- 106,309,022

i | 1918 of 2658

101 /109



Switch to Hands-on:

Visualization
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Long reads
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Tools for long reads

e Long read data can be used to improve assembly
» Bottlenecks:

o DNA extraction (?)
o cost of data generation
o sequencing errors

» State of the art pipeline for assembly :

o standalone long read assembly

FLYE (Kolmogorov, Rayko, Yuan, Polevikov, and Pevzner, 2019)
canu

Optional error correction with short reads

Unicycler

O O O O
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Take home message
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Take home message

— You have in your hands the first tools to analyze your NGS data

— Data quality control is a crucial step

— It is essential to define your plan analyses upstream of your project.
— NGS are still an ongoing active bioinformatics research field

—> Biostatistics ...
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