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Practical informations
9h30 - 17h00

2 breaks morning and afternoon

Lunch break of 1 hour
Remote session … please be comprehensive !
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Remote sessions rules
Even remotely, it should be interactive !

Please interrupt us :

raise (virtually) your hand
ask questions in the chat

Practical session will be different :

tutorial support with practice to do on your own during a few minutes
group synchronization to be sure everyone follows
Inform us of your progress :

Ask (any) questions
Use green / red reactions
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Ice breaking session
Who are you?

Institution, laboratory, position …
Why are your here

What are your needs in NGS data analysis?
Do you have already dealt with NGS data?

Which kind of data?
Aim of the study?

Have you ever used Galaxy ?
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Migale team

Migale website
Infrastructure for bioinformatics

storage, compute
tools, databanks
interfaces (Galaxy)

Dedicated service to Data Analysis
Specialists in Metagenomics
Bioinformatics & Statistics
More than 60 projects since 2016
Collaboration or Accompaniment
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https://migale.inrae.fr/
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Objectives
After this training day, you will know:

the characteristics of the main types of sequencers
how to do a quality control of the raw sequences
how to assemble a (small) genome
how to align reads to a reference genome
how to explore graphically an alignment
how to compare assemblies
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Morning

Introduction & Round table
Sequencing technologies

Break

Quality Control
Data cleaning
Assembly

Afternoon

Assembly evaluation and comparison

Break

Mapping
Visualisation

Program
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Next generation Sequencing in a few slidesNext generation Sequencing in a few slides
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Sequencing Cost per Megabase
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Genome Sequencing, why ?
Interest in a genome that has not yet been sequenced

Assembly and annotation
de novo sequencing
chromosomal rearrangements
metagenomics

A reference genome is available

Alignment (mapping) of reads on the genome
Detection of genomic variants (SNPs)
RNA-seq (gene expression)
ChIP-seq (regulation of gene expression)
Chromosomal rearrangements, variation in gene copy number
Detection of small non-coding RNAs
metagenomics
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Sequencing challenges
Smallest known (non viral) genome:

Carsonella ruddii = 0.16 Mbp

Largest known genome:

Paris japonica = 150 Gbp
Amoeba dubia = 670 Gbp

Maximum Reads Size :

1st generation (Sanger): up to 900 bp
2nd generation: up to 500 bp
3rd generation: up to 100 - 1000 Kbp

Need to cut the genome into millions of fragments (shotgun sequencing) from the 2 DNA
strands.

The operation to reconstruct the genetic elements from the raw reads is called assembly.
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Sequencing technologies
First generation :

Sanger sequencing
First step : fragment cloning
Reads up to 900 bp
Expensive
low throughput
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Next generation Sequencing technologies
Second generation (since 2007)

454 - Sequencing by Synthesis - PCR Amplification
SOLiD : Sequencing by Ligation - PCR Amplification
Ion Torrent : Sequencing by Synthesis - PCR Amplification
Illumina : Sequencing by Synthesis - PCR Amplification

14 / 109



Illumina : principles
Based on "reversible terminated chemistry" : reversible terminators that enable the
identification of single nucleotides as they are washed over DNA strands.

Three steps :

Amplification of DNA fragments
Sequencing
Analysis

Reference : Technology Spotlight: Illumina® Sequencing
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https://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf


Prepare genomic DNA samples

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments
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Attach DNA to Flow Cell Surface

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.
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Bridge Ampli�cation

Add unlabelled nucleotides and enzyme to initiate solid-phase bridge amplification.
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Fragments Become Double Stranded

The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase
substrate.
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Denature the Double-Stranded Molecule

Denaturation leaves single-stranded templates anchored to the substrate.
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Complete Ampli�cation

Several millions dense clusters of double-stranded DNA are grated in in channel of the flow
cell.
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Determine First Base

The first sequencing cycle begins by adding four labelled reversible terminators, primers,
and DNA polymerase.
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Image First Base

After laser excitation, the emitted fluorescence from each cluster is captured and the first
base is identified.

The blocked 3' terminus and florphore are removed,flow cell washed, leaving the terminator
free for a second cycle.
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Determine Second Base

The next cycle repeats the incorporation of four labelled reversible terminators, primers, and
DNA polymerase.
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Image Second Chemistry Cycle

After laser excitation, the image is captured as before, and the identity of the second base is
recorded.
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Sequencing Over Multiple Chemistry Cycles

The sequencing cycles are repeated to determine the sequence of bases in a fragment, one
base at a time.

Millions of clusters are processed in parallel, allowing high-throughput sequencing.
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Illumina : summary
High precision >99.5% (main type or errors : substitutions)
Short reads (maximum 2 x 250)
Huge throughput (up to 6 Tbp per run on NovaSeq)
Some under-representation of rich AT- and GC- regions.
Video
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https://youtu.be/fCd6B5HRaZ8


Read : piece of sequenced DNA

DNA fragment = 1 or more reads
depending on whether the sequencing is
single end or paired-end

Insert = Fragment size

Depth =  
N = number of reads, 
L = size, 
G = genome size

Coverage = % of genome covered

Sequencing - Glossary

N ∗ L/G
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3d generation
Target the weaknesses of the 2nd generation :

PCR amplification
Short reads

Two main competitors (in production ) :

Pacific Bioscience (PacBio)
Oxford Nanopore Technologies (ONT)
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PacBio

A polymerase is immobilized at the bottom of a sequencing unit called zero-mode waveguide
(ZMW) .Four fluorescent-labelled nucleotides, which generate distinct emission spectrums,
are added to the SMRT cell. As a base is held by the polymerase, a light pulse is produced that
identifies the base. The replication processes in all ZMWs of a SMRT cell are recorded by a
“movie” of light pulses, and the pulses corresponding to each ZMW can be interpreted to be a
sequence of bases.

Reference
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https://doi.org/10.1126/science.1162986


PacBio : summary
Long reads (up to Kbs with SequelII)
Depends on DNA quality
High error rate. Tend to lower with depth
Medium throughput

Applications :

IsoSeq (RNA Isoform full length sequencing)
Detection of DNA modification
Assembly
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Oxford Nanopore
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Oxford Nanopore
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MinION, GridION, PromethION
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Sequencing on The ISS
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ONT Summary
Ultra long reads ( up to 1 Mb (!) )
Length of the reads depends on DNA quality
Low to high throughput
"On field" sequencing
Direct RNA sequencing, peptide sequencing
High error rate (5-10%), tends to lower with new chemistry, base calling algorithms and
depth

Applications :

Full length isofrom sequencing, direct RNA sequencing
Detection of DNA modification
Assembly
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An other view on sequencing technologies (probably out of
date)
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Global Summary (probably out of date)

An interesting review (Goodwin, McPherson, and McCombie, 2016)

Nature review : Milestones in Genomic Sequencing 38 / 109

https://doi.org/10.1038/nrg.2016.49
https://www.nature.com/immersive/d42859-020-00099-0/index.html


Switch to Hands-on :Switch to Hands-on :
Connect to GalaxyConnect to Galaxy
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Practical session :
Escherichia coli genome (re)sequencing

Illumina MiSeq
Paired-end sequencing (2*150bp , insert size ~300bp)
Sub-sampled
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Connect to Galaxy
https://galaxy.migale.inrae.fr

Login : stageXX

Data in Shared Data / Data Libraries / formation NGS / Reads

References in Shared Data / Data Libraries / formation NGS / Refs
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https://galaxy.migale.inrae.fr/


FASTQ formatFASTQ format
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FASTQ syntax
The FASTQ format is the de facto standard by which all sequencing instruments represent
data. It may be thought of as a variant of the FASTA format that allows it to associate a quality
measure to each sequence base: FASTA with QUALITIES.
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FASTQ syntax
The FASTQ format consists of 4 sections:

1. A FASTA-like header, but instead of the >  symbol it uses the @  symbol. This is followed by
an ID and more optional text, similar to the FASTA headers.

2. The second section contains the measured sequence (typically on a single line), but it may
be wrapped until the +  sign starts the next section.

3. The third section is marked by the +  sign and may be optionally followed by the same
sequence id and header as the first section

4. The last line encodes the quality values for the sequence in section 2, and must be of the
same length as section 2.
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FASTQ syntax
Example

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65
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FASTQ quality
Each character represents a numerical value: a so-called Phred score, encoded via a single
letter encoding.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
|    |    |    |    |    |    |    |    |
0....5...10...15...20...25...30...35...40
|    |    |    |    |    |    |    |    |
worst................................best

The numbers represent the error probabilities via the formula: 

It is basically summarized as:

P=0 means 1/1 (100% probability of error)
P=10 means 1/10 (10% probability of error)
P=20 means 1/100 (1% probability of error)
P=30 means 1/1000 (0.1% probability of error)
P=40 means 1/10000 (0.01% probability of error)

Error = 10−P/10
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FASTQ quality encoding speci�cities
There was a time when instrumentation makers could not decide at what character to start
the scale. The current standard shown above is the so-called Sanger (+33) format where the
ASCII codes are shifted by 33. There is the so-called +64 format that starts close to where the
other scale ends.
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FASTQ Header informations
Information is often encoded in the “free” text section of a FASTQ file.

@EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG  contains the following
information:

EAS139 : the unique instrument name
136 : the run id
FC706VJ : the flowcell id
2 : flowcell lane
2104 : tile number within the flowcell lane
15343 : ‘x’-coordinate of the cluster within the tile
197393 : ‘y’-coordinate of the cluster within the tile
1 : the member of a pair, 1 or 2 (paired-end or mate-pair reads only)
Y : Y if the read is filtered, N otherwise
18 : 0 when none of the control bits are on, otherwise it is an even number
ATCACG : index sequence

This information is specific to a particular instrument/vendor and may change with different
versions or releases of that instrument.
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Switch to Hands-on :Switch to Hands-on :
Fastq import & visualisationFastq import & visualisation
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Quality controlQuality control
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Why QC'ing your reads ?
What are the information you want to know about the sequencing when you perform
Quality Control ?

Collective Answer on this collaborative whiteboard
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http://scrumblr.ca/ngs


Why QC'ing your reads ?
Try to answer to (not always) simple questions:

Are data conform to the expected level of performance?
Size
Number of reads
Quality

Residual presence of adapters or indexes ?
Are there (un)expected technical biases
Are there (un)expected biological biases

Quality control without context leads to misinterpretation

53 / 109



Quality control for FASTQ �les
FastQC (Andrews, 2010)

QC for (Illumina) FastQ files
Command line fastqc or graphical interface
Complete HTML report to spot problem originating from sequencer, library
preparation, contamination
Summary graphs and tables to quickly assess your data

https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/ 54 / 109

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://rtsf.natsci.msu.edu/genomics/tech-notes/fastqc-tutorial-and-faq/


Switch to Hands-on :Switch to Hands-on :
Quality Control with FastQCQuality Control with FastQC
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Reads cleaningReads cleaning
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Objectives
Detect and remove sequencing adapters (still) present in the FastQ files
Filter / trim reads according to quality (as plotted in FastQC)

Tools
Simple & fast : Sickle (Joshi and Fass, 2011) (quality), cutadapt (Martin, 2011) (adpater
removal)
Ultra-configurable : Trimmomatic
All in one & ultra-fast : fastp (Zhou, Chen, Chen, and Gu, 2018)
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https://dx.doi.org/10.1093/bioinformatics/bty560


Switch to hands-on :Switch to hands-on :
Clean your data with SickleClean your data with Sickle
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Assembly : principles
Similar to a puzzle :

millions of pieces -without the original image
with pieces in both sense
the pieces do not necessarily fit together (sequencing errors)
parts of the puzzle are missing (cover + sequencing bias)
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Assembly
All assembly algorithms are based on read overlap.

Different ways of calculating overlap :

"All vs All" comparison :

"old" assemblers based on this approach
Graph representing overlap between reads
Quadratic number of comparison (number of reads^2 )
do not scale with billion of reads

de Bruijn Graph

Named after Nicolaas Govert de Bruijn
Directed graph representing overlaps between sequences of symbols
Sequences can be reconstructed by moving between nodes in graph

Slide Credits
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https://galaxyproject.github.io/training-material/topics/assembly/tutorials/debruijn-graph-assembly/slides.html


De Bruijn Graph
A directed graph of sequences of symbols
Nodes in the graph are k-mers
Edges represent consecutive k-mers (which overlap by k-1 symbols)

Consider the 2 symbol alphabet (0 & 1) de Bruijn Graph for k =3
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Producing sequences
Sequences of symbols are produced by moving through the graph
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K-mers ?
To be able to use de Bruijn graphs, we need reads of length L to overlap by L-1 bases.
Not all reads will overlap another read perfectly.

Read errors
Coverage "holes"

Not all reads are the same length (depending on technology and quality clean-up)

To help us get around these problems, we use all k-length subsequences of the reads,
these are the k-mers.
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What are K-mers ?
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K-mers de Bruijn graph
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K-mers de Bruijn graph
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K-mers de Bruijn graph
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The problem of repeats
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The problem of repeats
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The problem of repeats
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Di�erent k
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Di�erent k

2 contigs : MISSISSIS SSIPPI
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Choose k wisely
Lower k

More connections
Less chance of resolving small repeats
Higher k-mer coverage

Higher k
Less connections
More chance of resolving small repeats
Lower k-mer coverage

Optimum value for k will balance these effects.

73 / 109



Sequencing errors
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Sequencing errors
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Sequencing errors
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More coverage
Errors won't be duplicated in every read
Most reads will be error free
We can count the frequency of each k-mer
Annotate the graph with the frequencies
Use the frequency data to clean the de Bruijn graph

More coverage depth will help overcome errors!
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Sequencing errors - coverage

Which path looks most valid ? Why ?
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An important parameter : coverage cuto�
At what point is a low coverage indicative of an error?
Can we ignore low coverage nodes and paths?
This is a new assembly parameter

Coverage cut-off is an important parameter to differentiate error from real variations
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de Bruijn Graph Assembly process
1. Select a value for k
2. "Hash" the reads (make the kmers)
3. Count the kmers
4. Make the de Bruijn graph
5. Perform graph simplification steps - use cov cutoff
6. Read off contigs from simplified graph
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Graph simpli�cation : Chain Merging
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Graph simpli�cation : Tip Clipping
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Graph simpli�cation : Bubble Collapsing
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Make contigs
Find an unbalanced node in the graph

Follow the chain of nodes and "read off" the bases to produce the contigs

Where there is an ambiguous divergence/convergence, stop the current contig and start a
new one.

Re-trace the reads through the contigs to help with repeat resolution
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Graph simpli�cation : Remove low coverage nodes
remove erroneous nodes and edges using the "coverage cutoff"

genuine short nodes will be kept because of their high coverage
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Assemble with SPADES
SPADES (Bankevich, Nurk, Antipov, Gurevich, Dvorkin, Kulikov, Lesin, Nikolenko, Pham,
Prjibelski, and others, 2012)is the de Bruijn graph assembler by Pavel Pevzner's group out of
St. Petersburg

Uses multiple k-mers to build the graph
Graph has connectivity and specificity
Usually use a low, medium and high k-mer size together.

Performs error correction on the reads first
Maps reads back to the contigs and scaffolds as a check
Under active development
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Switch to Hands-on :Switch to Hands-on :
Assembly with SPADESAssembly with SPADES
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Assessment of assembly quality
After assembly, we use QUAST (Gurevich, Saveliev, Vyahhi, and Tesler, 2013) to evaluate and
compare genome assemblies.

What QUAST does :

De novo genome assembly evaluation
Reference-based evaluation
Evaluating so-called misassemblies
Report and visualisation
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De novo metrics
Evaluation of the assembly based on

Number of contigs greater than a given threshold (0, 500nct, 1kb)
Total / threshold assembly size
largest contig size
N50 : the sequence length of the shortest contig at 50% of the total assembly length
(equivalent to a median of contig lengths)
L50 : the number of contigs at 50% of the total assembly length
N75/L75 idem, for 75% of the assembly length
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Reference-based metrics
Metrics based on based on an alignment of all contigs on a reference genome. :

duplication rate
percent genome complete
NGA50 : equivalent of N50 but with the aligned block of the contigs
"Misassemblies" : breakpoint of alignment in a contigs. "
Visualisation available
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Switch to Hands-on :Switch to Hands-on :
Assembly QC with QuastAssembly QC with Quast
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AlignmentAlignment
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Alignment strategies
GAAGCTCTAGGATTACGATCTTGATCGCCGGGAAATTATGATCCTGACCTGAGTTTAAGGCATGGACCCATAA
                 ATCTTGATCGCCGAC----ATT       # GLOBAL
                 ATCTTGATCGCCGACATT           # LOCAL, with soft clipping

Global alignment
Global alignments, which attempt to align every residue in every sequence, are most useful
when the sequences in the query set are similar and of roughly equal size. (This does not
mean global alignments cannot start and/or end in gaps.) A general global alignment
technique is the Needleman–Wunsch algorithm , which is based on dynamic programming.
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Alignment strategies
GAAGCTCTAGGATTACGATCTTGATCGCCGGGAAATTATGATCCTGACCTGAGTTTAAGGCATGGACCCATAA
                 ATCTTGATCGCCGAC----ATT       # GLOBAL
                 ATCTTGATCGCCGACATT           # LOCAL, with soft clipping

Local alignment
Local alignments are more useful for dissimilar sequences that are suspected to contain
regions of similarity or similar sequence motifs within their larger sequence context. The
Smith–Waterman algorithm  is a general local alignment method based on the same dynamic
programming scheme but with additional choices to start and end at any place.
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Seed-and-extend especially adapted to NGS data
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Seed-and-extend mappers are a class of
read mappers that break down each read
sequence into seeds (i.e., smaller segments)
to find locations in the reference genome
that closely match the read.

1. The mapper obtains a read
2. The mapper selects smaller DNA

segments from the read to serve as
seeds

3. The mapper indexes a data structure
with each seed to obtain a list of
possible locations within the reference
genome that could result in a match

4. For each possible location in the list, the
mapper obtains the corresponding DNA
sequence from the reference genome

5. The mapper aligns the read sequence to
the reference sequence, using an
expensive sequence alignment (i.e.,
verification) algorithm to determine the
similarity between the read sequence
and the reference sequence.

Seed-and-extend especially adapted to NGS data
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Mapping
For further analysis it is necessary to map all the reads on the contigs.

We will use bowtie2 (Langmead and Salzberg, 2012)
Firstly, we build an index.
Secondly, reads are aligned.
We can use samtools (Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis,
and Durbin, 2009) and bedtools (Quinlan and Hall, 2010) to manipulate SAM/BAM
files.
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BAM/SAM
SAM = Sequence Alignment Map
BAM = Binary Alignment Map

These files represent an alignment of FASTQ reads against a reference like a FASTA.

After a header section (for reference), each line represents the alignment of one read.
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Switch to Hands-on :Switch to Hands-on :
MappingMapping
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VisualizationVisualization
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Visualization
Some tools for visualization and browsing

IGV (alignments and reference)
Artemis (genome and annotations)
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Switch to Hands-on :Switch to Hands-on :
VisualizationVisualization
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Long readsLong reads
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Tools for long reads
Long read data can be used to improve assembly

Bottlenecks :

DNA extraction (?)
cost of data generation
sequencing errors

State of the art pipeline for assembly :

standalone long read assembly
FLYE (Kolmogorov, Rayko, Yuan, Polevikov, and Pevzner, 2019)
canu
Optional error correction with short reads
Unicycler
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https://doi.org/10.1101/637637


Take home messageTake home message
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Take home messageTake home message
→ You have in your hands the �rst tools to analyze your NGS data→ You have in your hands the �rst tools to analyze your NGS data

→ Data quality control is a crucial step→ Data quality control is a crucial step

→ It is essential to de�ne your plan analyses upstream of your project.→ It is essential to de�ne your plan analyses upstream of your project.

→ NGS are still an ongoing active bioinformatics research �eld→ NGS are still an ongoing active bioinformatics research �eld

→ Biostatistics ...→ Biostatistics ...
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